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ЕВОЛЮЦІЯ МЕТОДІВ AI ДЛЯ МІНІМІЗАЦІЇ РИЗИКІВ НЕВИЗНАЧЕНОСТІ В 

IOT: ВІД КЛАСИЧНИХ АЛГОРИТМІВ ДО ГЛИБОКОГО НАВЧАННЯ 
 
Дана стаття є оглядовою роботою, що аналізує історичний розвиток штучного інтелекту (AI) для подолання 

інформаційної невизначеності в системах Інтернету речей (IoT). Розглянуто етапи від класичних методів (байєсівські мережі, 
нечітка логіка) до машинного навчання (SVM, decision trees) та сучасних підходів глибокого навчання (CNN, RNN, GAN), з 
акцентом на їх застосування для забезпечення безпеки, повноти даних та обробки шуму в IoT-сценаріях, таких як смарт-міста 
та промисловість 4.0. Обговорюються виклики та майбутні тенденції за напрямком теми статті та розписано відповідні 
висновки.  

Ключові слова: Інтернет речей (IoT), штучний інтелект (AI), інформаційна невизначеність, машинне навчання, 
глибоке навчання, згорткові нейронні мережі (CNN), рекурентні нейронні мережі (RNN), генеративні змагальні мережі (GAN), 
кібербезпека, прогнозне обслуговування. 
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EVOLUTION OF AI METHODS FOR MINIMIZING UNCERTAINTY RISKS IN IOT: 

FROM CLASSICAL ALGORITHMS TO DEEP LEARNING 
 

This article is a review paper that analyzes the historical development of artificial intelligence (AI) for overcoming information 
uncertainty in Internet of Things (IoT) systems. Information uncertainty in IoT is a critical issue arising from factors such as sensor 
noise, incomplete data packets, dynamic environmental changes, and potential cyber threats, leading to risks in data security, 
information processing efficiency, and real-time decision-making accuracy. The authors examines stages from classical methods 
dominant in the 1980s–2000s, such as rule-based systems, Bayesian networks, and fuzzy logic, which provided probabilistic 
evaluations using simple rules and mathematical formulas, ensuring ease of implementation and low computational requirements but 
limiting adaptability to dynamic and large-scale IoT networks where data can be variable and unpredictable. 

The transitional period of the 2000s–2010s is characterized by the introduction of machine learning (ML), including 
supervised learning algorithms like support vector machines (SVM) and decision trees, as well as unsupervised learning for clustering, 
which significantly improved systems' ability to handle large volumes of data, enabling effective anomaly detection, device failure 
prediction, and noise mitigation with higher accuracy compared to classical methods, though dependent on the quality of training 
datasets. Modern DL methods, such as convolutional neural networks (CNN) for visual data analysis, recurrent neural networks (RNN) 
for time series, and generative adversarial networks (GAN) for synthetic data creation, are integrated with edge computing and cloud 
solutions, providing real-time uncertainty processing in areas like smart cities, Industry 4.0, and medical IoT devices, where accuracy 
can reach 30–50% higher than in previous generations. The article synthesizes existing literature from databases such as IEEE Xplore 
and Scopus, highlighting key advantages of each stage (from the simplicity of classical methods to automation in DL), limitations 
(e.g., computational complexity, vulnerability to adversarial attacks, and ethical privacy issues), and current challenges related to AI 
integration in IoT ecosystems. Additionally, prospects for development are proposed, including hybrid models combining AI with 
quantum computing and open platforms for greater resilience to uncertainties. The conclusions emphasize that the evolution of AI 
has transformed it into an essential tool for creating resilient and secure IoT systems, with recommendations for further research 
focused on method standardization and practical implementation in real scenarios. 

The goal of this article is to provide a systematic analysis of AI methods' evolution for minimizing information uncertainty 
risks in IoT, from classical algorithms to deep learning, with a synthesis of key studies, comparison of advantages and limitations, 
and development prospects. Tasks include uncertainty classification, historical AI stage descriptions, modern method analysis, and 
future research recommendations. 

Key words: Internet of Things (IoT), artificial intelligence (AI), information uncertainty, machine learning, deep learning, 
convolutional neural networks (CNN), recurrent neural networks (RNN), generative adversarial networks (GAN), cybersecurity, 
predictive maintenance. 
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ПОСТАНОВКА ПРОБЛЕМИ У ЗАГАЛЬНОМУ ВИГЛЯДІ  

ТА ЇЇ ЗВ’ЯЗОК ІЗ ВАЖЛИВИМИ НАУКОВИМИ ЧИ ПРАКТИЧНИМИ ЗАВДАННЯМИ 
Інформаційна невизначеність у системах Інтернету речей (IoT) є критичною проблемою, яка виникає 

через різні фактори, такі як шум від сенсорів, неповні пакети даних, динамічні зміни в середовищі та 
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потенційні кіберзагрози, що призводять до значних ризиків для безпеки даних, ефективності обробки 

інформації та точності прийняття рішень у реальному часі. Ця оглядова стаття присвячена детальному аналізу 

еволюції методів штучного інтелекту (AI) для мінімізації цих ризиків, починаючи від класичних алгоритмів, 

що домінували в період 1980–2000-х років, таких як правило-базовані системи, байєсівські мережі та нечітка 

логіка (fuzzy logic), і аж до сучасних підходів глибокого навчання (DL), які активно розвиваються з 2010-х 

років і дозволяють обробляти складніші сценарії невизначеності [1]. 

У ранніх етапах розвитку AI акцент робився на статичних моделях, які забезпечували ймовірнісну 

оцінку невизначеностей за допомогою простих правил та математичних формул, що гарантувало легкість 

впровадження та низькі обчислювальні вимоги, однак обмежувало адаптивність до динамічних і масштабних 

IoT-мереж, де дані можуть бути варіативними та непередбачуваними [2].  

Перехідний період 2000–2010-х років характеризувався впровадженням машинного навчання (ML), 

включаючи алгоритми supervised learning, таких як support vector machines (SVM) та decision trees, а також 

unsupervised learning для кластеризації, що значно покращило здатність систем до обробки великих обсягів 

даних, дозволяючи ефективне виявлення аномалій, прогнозування збоїв у пристроях та зменшення впливу 

шуму з вищою точністю, порівняно з класичними методами, хоча і залежало від якості тренувальних наборів.  

Сучасні DL-методи, такі як convolutional neural networks (CNN) для аналізу візуальних даних, 

recurrent neural networks (RNN) для часових рядів та generative adversarial networks (GAN) для створення 

синтетичних даних, інтегруються з технологіями edge computing та хмарними рішеннями, забезпечуючи 

обробку невизначеностей у реальному часі в таких сферах, як смарт-міста, промисловість 4.0 та медичні IoT-

пристрої, де точність може сягати 30–50% вищої, ніж у попередніх поколіннях [3].  

Стаття здійснює синтез існуючої літератури з баз даних, таких як IEEE Xplore та Scopus, виділяє 

ключові переваги кожного етапу (від простоти класичних методів до автоматизації в DL), обмеження 

(наприклад, обчислювальна складність, вразливість до adversarial attacks та етичні питання приватності) та 

поточні виклики, пов'язані з інтеграцією AI в IoT-екосистеми. Крім того, пропонуються перспективи 

розвитку, включаючи гібридні моделі, що поєднують AI з квантовим обчисленням, відкритими платформами 

та мережами 6G для ще більшої стійкості до невизначеностей. Висновки статті підкреслюють, що еволюція 

AI трансформувала його в невід'ємний інструмент для створення стійких та безпечних IoT-систем, з 

рекомендаціями для подальших досліджень, спрямованих на стандартизацію методів та їхнє практичне 

впровадження в реальних сценаріях [4]. 

У сучасному світі системи Інтернету речей (IoT) стали невід'ємною частиною повсякденного життя, 

промисловості та інфраструктури, забезпечуючи збір, передачу та обробку величезних обсягів даних у 

реальному часі. За прогнозами, кількість IoT-пристроїв перевищить 75 мільярдів до 2030 року, що призведе 

до експоненціального зростання даних і, відповідно, викликів, пов'язаних з їхньою обробкою та захистом. 

Однак одним з ключових бар'єрів для ефективного функціонування IoT є інформаційна невизначеність — 

стан, коли дані є неповними, неточними, шумовими або неоднозначними через фактори, такі як похибки 

сенсорів, мережеві затримки, зовнішні впливи (наприклад, погодні умови) чи кіберзагрози. Ця невизначеність 

класифікується на алеаторичну (випадкову, пов'язану з неконтрольованими варіаціями) та епістемічну 

(пов'язану з неповнотою знань чи моделями), і вона може призводити до помилок у прийнятті рішень, 

зниження ефективності систем та ризиків безпеки, особливо в критичних сферах, як смарт-міста, 

промисловість 4.0 чи медичні пристрої [5]. 

Штучний інтелект (AI) відіграє ключову роль у мінімізації цих ризиків, еволюціонуючи від простих 

алгоритмів до складних моделей, здатних адаптуватися до динамічних умов. Історично, інтеграція AI з IoT 

почалася з базових методів для обробки статичних даних, але з часом перейшла до машинного навчання (ML) 

та глибокого навчання (DL), що дозволяють прогнозувати, фільтрувати та оптимізувати дані в умовах 

невизначеності. Огляд літератури показує, що ранні дослідження фокусувалися на класичних алгоритмах, 

таких як байєсівські мережі та нечітка логіка, для ймовірнісної оцінки ризиків у сенсорних мережах. У 2000–

2010-х роках ML-методи, такі як SVM та decision trees, покращили обробку великих даних, застосовуючись 

для виявлення аномалій та predictive maintenance в IoT. Сучасні тенденції, включаючи DL (наприклад, CNN 

та RNN) та генеративний AI, інтегруються з edge computing для реального часу аналізу, як показано в оглядах 

про трансформаційний вплив AI на IoT-додатки. Проте, незважаючи на прогрес, існують прогалини в 

літературі, такі як недостатній акцент на еволюційному аспекті AI в контексті невизначеності, а також 

виклики, пов'язані з обчислювальною складністю та етичними аспектами [6]. 

Мета цієї статті — надати систематичний аналіз еволюції методів AI для мінімізації ризиків 

інформаційної невизначеності в IoT, від класичних алгоритмів до глибокого навчання, з синтезом ключових 

досліджень, порівнянням переваг та обмежень, а також перспективами розвитку. Завдання включають: 

класифікацію невизначеностей, опис історичних етапів AI, аналіз сучасних методів та рекомендації для 

майбутніх досліджень. 
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АНАЛІЗ ДОСЛІДЖЕНЬ ТА ПУБЛІКАЦІЙ 
У цьому розділі розглядаються ключові аспекти еволюції методів штучного інтелекту для подолання 

інформаційної невизначеності в системах IoT. Розділ структуровано хронологічно та тематично, починаючи 

від теоретичних основ, через класичні та перехідні методи, до сучасних підходів, з акцентом на їхні переваги, 

обмеження та застосування. Це дозволяє систематизувати знання з літератури та виділити тенденції розвитку, 

що є основою для розуміння поточного стану та перспектив технологій [7]. 

Інформаційна невизначеність у системах IoT є фундаментальною проблемою, що виникає через 

неповноту, неточність або неоднозначність даних, зібраних з сенсорів та пристроїв. Вона класифікується на 

алеаторичну (випадкову, пов'язану з шумом та неконтрольованими варіаціями) та епістемічну (пов'язану з 

обмеженістю знань чи моделями). У IoT невизначеність часто спричинена факторами, такими як похибки 

сенсорів, мережеві затримки, зовнішні впливи (наприклад, погодні умови) або кіберзагрози, що призводить 

до ризиків у безпеці та ефективності систем. Теоретично, невизначеність моделюється за допомогою 

математичних підходів, таких як ентропія Шеннона для кількісної оцінки неоднозначності даних чи 

ймовірнісні моделі для прогнозування [8][9]. 

У контексті IoT, невизначеність впливає на бізнес-процеси, вимагаючи механізмів обробки, таких як 

резервні стратегії. Роль AI тут полягає в моделюванні цих ризиків через статистичні методи, що дозволяють 

адаптуватися до динамічних умов. Наприклад, у сенсорних мережах невизначеність може бути оцінена через 

варіацію сигналів, з використанням формул для розрахунку шуму. Це створює основу для подальшого 

розвитку методів AI, спрямованих на мінімізацію впливу невизначеності. 

Еволюція класичних алгоритмів AI для обробки невизначеності розпочалася в середині XX століття, 

але набула значного розвитку в 1980–2000-х роках, коли дослідники почали інтегрувати ймовірнісні та нечіткі 

підходи для моделювання реальних систем, включаючи ранні прототипи IoT, такі як сенсорні мережі. 

Концепція невизначеності в AI була формалізована в 1960-х роках, зокрема з появою нечіткої логіки (fuzzy 

logic), запропонованої Лотфі Заде в 1965 році, як розширення класичної булевої логіки для роботи з нечіткими 

або imprecise даними, де традиційні бінарні значення (0 або 1) замінюються ступенями приналежності 

(membership functions) від 0 до 1 [10][11][12].  

У 1980-х роках нечітка логіка набула популярності в системах керування, а в 1990-х — інтегрувалася 

з AI для обробки vagueness, наприклад, у визначенні "як гаряче є гарячим". Паралельно, в 1980-х Джуда Перл 

розробив байєсівські мережі (Bayesian networks), графічні моделі для представлення ймовірнісних 

залежностей між змінними, з алгоритмами для оновлення ймовірностей (Bayesian updating) на основі нової 

інформації. Ці методи стали основою для handling uncertainty в AI, особливо в контексті обмежених обчислень 

ранніх комп'ютерів. 

Технічно, байєсівські мережі базуються на теоремі Байєса:  

 

                                   𝑃(𝐴 ∣ 𝐵) =
𝑃(В∣А)𝑃(𝐴)

𝑃(𝐵)
,                                                    (1) 

 

де A — гіпотеза, B — дані, а мережа представляє умовні ймовірності через спрямований ациклічний 

граф (DAG). Алгоритми, як junction tree або belief propagation, дозволяють ефективно обчислювати 

маргінальні ймовірності навіть у складних мережах. Нечітка логіка, у свою чергу, використовує функції 

приналежності μ(x), де μ(x)∈[0,1], та операції, як min для AND, max для OR, для агрегації нечітких правил. 

Наприклад, правило: "Якщо температура висока (fuzzy set з μ), то активувати охолодження з певним 

ступенем". 

Застосування в IoT: У ранніх сенсорних мережах (попередниках IoT) байєсівські мережі 

використовувалися для оцінки ймовірностей подій, наприклад, виявлення аномалій у даних від датчиків, де 

невизначеність виникає через шум або втрату пакетів. Нечітка логіка застосовувалася в системах моніторингу, 

як-от у промислових контролерах для обробки неточних сенсорних сигналів (наприклад, температура з 

похибкою), дозволяючи гнучкі рішення без жорстких порогів. У 1990-х–2000-х ці методи інтегрувалися в IoT-

прототипи для оптимізації ресурсів, наприклад, у бездротових сенсорних мережах (WSN) для зменшення 

енергоспоживання шляхом ймовірнісного маршрутизації [13].  

Переваги: простота реалізації та низькі обчислювальні вимоги, що робило їх ідеальними для 

обмежених пристроїв IoT. Обмеження: низька адаптивність до динамічних, великомасштабних даних, де 

невизначеність є варіативною, що призводило до неефективності в сучасних мережах з мільярдами пристроїв. 

Перехід до машинного навчання (ML) як домінуючого підходу в AI для обробки невизначеності в IoT 

відбувся в період 2000 – 2010-х років, коли зростання цифрових даних та інтернету стимулювало розвиток 

алгоритмів, здатних вчитися на великих обсягах інформації, а не тільки на фіксованих правилах. Історія ML 

сягає 1950 – х (наприклад, програма Артура Семюела для гри в шашки), але в 1990-х – 2000-х вона 

еволюціонувала від статистичних методів до практичних застосувань, з акцентом на обробку невизначеностей 

через ймовірнісні моделі та емпіричне зменшення ризику. У 2001 році Лео Брейман запропонував 

«Випадковий Ліс» — ансамблевий метод на базі дерев ухвалення рішень, що покращував стійкість до шуму 

та невизначеності шляхом агрегації множинних дерев (рис.1). У 2004 році з'явилися розширення SVM, як 
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факторизація матриці з максимальним запасом, для роботи з невизначеними даними в рекомендаційних 

системах. Цей період також позначився Netflix Prize 2006 року, де ML-моделі (включаючи SVM та ансамблеві 

методи) змагалися в прогнозуванні з невизначеними даними користувачів, стимулюючи розвиток для 

реальних систем. До 2010-х ML інтегрувався з сенсорними мережами (попередники IoT), де алгоритми 

обробляли невизначеність від датчиків у реальному часі [14][15]. 

 
Рис. 1. Принцип роботи алгоритму випадкового лісу 

 

Технічно, машини опорних векторів (SVM) — це алгоритми керованого навчання для класифікації та 

регресії, що мінімізують емпіричний ризик шляхом знаходження гіперплощини з максимальним запасом 

(margin) між класами, з використанням kernel trick для нелінійних задач, наприклад, RBF-kernel:  

 

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥 − 𝑥′ ∥2).                      (2) 

 

де K(x, x') – значення функції ядра між двома векторами x та x' (використовується для перетворення 

даних у вищий простір для нелінійної класифікації), x - вектор ознак першого зразка даних, x' – вектор ознак 

другого зразка даних, γ – параметр ядра, що контролює ширину гауссівської функції (вищі значення роблять 

модель чутливішою до локальних варіацій). 

Для probabilistic виводів застосовується масштабування Платта, що перетворює SVM-вихід на 

ймовірності. Decision trees будують моделі як деревоподібні структури, де вузли — тести на ознаках, гілки — 

результати, а листки — класи чи значення; вони обробляють невизначеність через ентропію:  

 

𝐼𝐺 = 𝐸(𝑝𝑎𝑟𝑒𝑛𝑡) − ∑𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐸(𝑐ℎ𝑖𝑙𝑑)),    (3) 

 

для вибору розгалужень, зменшуючи неоднозначність на кожному кроці, де G — міра зменшення 

невизначеності після розгалуження дерева рішень, E(parent) — середня невизначеність або неоднорідність 

даних у батьківському наборі перед розгалуженням, weighted – зважений коефіцієнт, E(child) – ентропія 

дочірнього вузла — невизначеність у кожному піднаборі даних після розгалуження. 

Unsupervised методи, як кластеризація (K-means), групують дані без міток, мінімізуючи 

внутрішньокластерну варіацію для роботи з шумовими наборами (рис.2) [16]. 

У 2000-х ML використовувався в бездротових сенсорних мережах (WSN) — попередниках IoT — для 

виявлення аномалій та прогнозування збоїв, наприклад, SVM для intrusion detection в мережах 2002 року, де 

алгоритм класифікував невизначені трафіки з сенсорів для безпеки. Дерева ухвалення рішень застосовувалися 

для прогнозного технічного обслуговування в промислових системах, аналізуючи сенсорні дані для 

прогнозування з точністю до 85%, зменшуючи вплив невизначеності від похибок датчиків. У 2009 році огляди 

підкреслювали ML для виявлення аномалій в сенсорних даних, як у медичних чи екологічних мережах, де 

алгоритми обробляли неповні набори для реального часу рішень. 

Еволюція глибокого навчання (DL) як ключового компонента сучасних AI-методів для обробки 

невизначеності в IoT розпочалася з 2010-х років, коли прориви в обчислювальних потужностях (наприклад, 

GPU) та великих даних дозволили тренувати глибокі нейронні мережі з багатьма шарами, перевершуючи 

традиційне ML у складних задачах. Історія DL сягає 1940-х (кібернетика та перші нейронні моделі), але 

сучасний бум почався в 2012 році з AlexNet (CNN-модель Крізевського), яка перемогла в ImageNet, 

демонструючи здатність DL до автоматичного витягування ознак з даних, включаючи шумові та невизначені. 
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У 2014–2015 роках з'явилися RNN-варіанти, як LSTM (Hochreiter & Schmidhuber, 1997, але популярні в 2010-

х), для послідовних даних, а в 2014 GAN (Goodfellow) для генерації даних. У контексті IoT, DL інтегрувався 

з 2015 року для аналізу великих даних (big data) від сенсорів, еволюціонуючи до гібридних систем для 

реального часу обробки невизначеностей, як показано в оглядах 2018 року про DL для IoT потокової 

аналітики. До 2020-х DL адаптувався для IoT-безпеки, з фокусом на гібридні моделі для протидії 

еволюціонуючим загрозам, як у 2025 році з глибоким навчанням на основі невизначеності з гібридними 

моделями [17][18][19]. 

 

 
Рис. 2. Класифікація об’єктів машиною опорних векторів 

 

Технічно, згорткові нейронні мережі (CNN) — це DL-архітектури для даних з просторовою 

структурою (наприклад, зображення), де конволюційні шари застосовують фільтри (kernels) для витягування 

ознак:  

𝑦𝑖,𝑗,𝑘 = ∑𝑚 ∑𝑛 𝑥𝑖+𝑚,𝑗+𝑛 + 𝑤𝑚,𝑛,𝑘 + 𝑏𝑘,     (4) 

 

з активаціями як ReLU  

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥),              (5) 

 

де f(x) – функція активації ReLU, x — вхідне значення,  𝑦𝑖,𝑗,𝑘 - вихідне значення на позиції (i,j) у k-

ому каналі мапи ознак (результат конволюції, витягнута ознака), 𝑥𝑖+𝑚,𝑗+𝑛 – елемент вхідних даних на зсунутій 

позиції (i+m, j+n) — частина вхідної мапи (наприклад, піксель зображення), 𝑤𝑚,𝑛,𝑘 – вага ядра на позиції (m,n) 

для k-ого каналу (навчаючий параметр, що визначає фільтр для ознак), bk – зсув (bias) для k-ого каналу — 

константа для налаштування моделі.  

Рекурентні нейронні мережі (RNN) та їх варіанти (LSTM) обробляють послідовності, зберігаючи 

стан: в LSTM комірка пам'яті оновлюється через forget gate: 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓),     (6) 
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де ft - вектор forget gate на часовому кроці t. Це вихідний вектор (зазвичай розмірності прихованого 

шару), де кожне значення в діапазоні [0, 1] вказує, яку частку інформації з попереднього стану комірки забути 

(0 — повністю забути, 1 — повністю зберегти), σ – функція активації сигмоїд. Вона стискає вхідне значення 

до інтервалу [0, 1], роблячи його ймовірнісним для "рішення" про забуття, Wf – матриця ваг для forget gate. 

Це навчаючі параметри моделі (матриця розмірності [розмір прихованого шару × (розмір прихованого шару 

+ розмір входу)]), ht-1 – прихований стан з попереднього часового кроку t-1. Це вектор, що містить "пам'ять" 

про попередні входи (розмірності прихованого шару), xt – вхідний вектор (input) на поточному часовому кроці 

t. Це дані, що надходять на вхід моделі на цьому кроці, bf – вектор зсуву (bias vector) для forget gate. 

Генеративні змагальні мережі (GAN) складаються з генератора (G) та дискримінатора (D), де G 

генерує дані для обману D, мінімізуючи функцію втрат:  

 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧 [𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))],           (7) 

 

де minG – генератор G намагається мінімізувати функцію V, maxD – дискримінатор D намагається 

максимізувати V, V(D,G) – функція вартості що вимірює "якість" гри: висока V означає, що D добре розрізняє, 

низька — що G добре генерує, 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 – математичне сподівання (expected value) по реальних даних x, 

вибраних з розподілу, D(x) – вихід дискримінатора для реальних даних x — скаляр [0,1], що є ймовірністю, 

що x реальний (вища — краще для D), 𝐸𝑧∼𝑝𝑧 – сподівання по шумові z, вибраних з розподілу pz, D(G(z)) – 

вихід D для згенерованих даних G(z) — ймовірність, що фальшиві дані "реальні" (G хоче це максимізувати, 

D — мінімумізувати). 

DL використовується для аналізу даних від сенсорів у смарт – містах, де CNN обробляє візуальні дані 

з камер для виявлення аномалій у трафіку з шумом, зменшуючи невизначеність через периферійні 

обчислення. RNN/LSTM застосовуються для прогнозування часових рядів у промисловому IoT (IIoT), 

наприклад, для predictive maintenance, де моделі обробляють невизначені сигнали від датчиків для 

прогнозування збоїв з точністю 90%+. GAN генерують синтетичні дані для тренування в умовах неповних 

наборів, як у IoT-безпеці для моделювання кіберзагроз. У 2022 році DL-моделі в матеріалознавстві (але 

аналогічно для IoT) обробляли невизначеність у даних для відкриттів, а в 2025 — гібридні для IoT-

кібербезпеки[20].  

Сучасні методи штучного інтелекту, зокрема гібридні моделі глибокого навчання (DL), ефективно 

справляються з інформаційною невизначеністю в системах IoT, де дані часто є неповними, шумовими або 

динамічними через похибки сенсорів, втрату пакетів чи кіберзагрози. Ці методи не тільки покращують 

точність аналізу, але й забезпечують безпеку (виявлення аномалій та інтрузий) та повноту даних (через 

генерацію синтетичних наборів або фільтрацію шуму). Нижче розглянуто, як такі методи працюють на основі 

двох ключових експериментів 2024–2025 років, з детальним описом їх проведення та механізмів боротьби з 

невизначеністю. Посилання на джерела надано для перевірки. У рамках нашого дослідження (розробка 

моделей захисту даних IoT в умовах невизначеності) ці методи будуть застосовані для створення гібридної 

моделі на базі LSTM та GAN для виявлення аномалій у потокових даних, з акцентом на симуляцію реальних 

IoT-сценаріїв (наприклад, сенсорні мережі з 20% шуму), щоб апробувати теоретичні підходи та досягти 

точності понад 95% [21]. 

У дослідженні 2024 року було проведено експеримент з uncertainty-based hybrid DL-моделлю 

(IoTSecUT), що поєднує CNN, LSTM та evidential deep learning (EDL) для виявлення еволюціонуючих 

кіберзагроз у IoT. Дослідження відбувалося на датасеті з 150 000 зразків мережевого трафіку (з відкритих 

джерел, як CIC-IoT-2023), з введеною невизначеністю: 25% неповних пакетів, 20% шуму та класовий 

дисбаланс (15% аномалій). Модель тренувалася на PyTorch з 100 епохами, використовуючи Adam optimizer 

(learning rate 0.0005) та batch size 128. CNN витягував ознаки з трафіку (конволюційні шари для просторових 

патернів), LSTM обробляв послідовності для динамічного аналізу, а EDL оцінював невизначеність через 

Dirichlet-параметри (α=[α1,…,αK], де невизначеність u=K∑αi). Тренування включало oversampling 

синтетичних даних для балансу, з regularization через L1-norm. Результат: точність 98.5%, F1-score 0.97, з 

покращенням безпеки від інтрузий на 28% порівняно з базовими моделями. Метод працює на основі 

probabilistic виводів, борючись з невизначеністю через оцінку впевненості прогнозів і генерацію балансованих 

наборів, забезпечуючи повноту даних для стійкої класифікації. У нашому дослідженні ми адаптуємо цю 

модель для симуляції захисту даних IoT, тестуючи на 50 000 зразках з шумом, щоб оцінити її ефективність у 

реальному часі [23][24].  

Експеримент 2025 року фокусувався на hybrid DL-фреймворку для виявлення DDoS-атак в IoT, 

поєднуючи CNN, RNN та feature selection для обробки високовимірних даних. Дослідження проводилося на 

датасеті з 200 000 зразків (з IoT Intrusion Dataset), з невизначеністю: 30% шуму та 20% втрат. Модель 

тренувалася на TensorFlow з 80 епохами, використовуючи RMSprop optimizer (momentum 0.9) та early stopping. 

CNN витягував ознаки (фільтри 5x5 з ReLU), RNN (GRU) аналізував послідовності, з attention mechanism для 

фокусу на критичних частинах. Невизначеність зменшувалася через uncertainty quantification (variance 

minimization у loss-функції). Результат: точність 99.2%, F1-score 0.98, з зменшенням помилок на 35%. Метод 
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працює на основі змагальної оптимізації (min-max loss), борючись з невизначеністю через фільтрацію шумів 

і реконструкцію втрат, забезпечуючи безпеку та повноту через адаптивну класифікацію. У нашому 

дослідженні ми використаємо подібний підхід для моделювання захисту даних IoT, тренуючи на 

симульованих даних з 25% шуму, щоб досягти точності 96% у виявленні аномалій [25][26][27][28].  

Ці експерименти демонструють, як гібридні DL-методи забезпечують безпеку (виявлення атак) та 

повноту (реконструкція даних), але вимагають оптимізації для енергоефективності. У нашому дослідженні ці 

методи будуть апробовані на реальних даних для наукового дослідження, з фокусом на інтеграцію з edge 

computing. 

 

ВИСНОВКИ З ДАНОГО ДОСЛІДЖЕННЯ  

І ПЕРСПЕКТИВИ ПОДАЛЬШИХ РОЗВІДОК У ДАНОМУ НАПРЯМІ 

Дослідження демонструє, що еволюція штучного інтелекту (ШІ) для зменшення ризиків 

інформаційної невизначеності в системах IoT пройшла шлях від базових ймовірнісних моделей до складних 

нейронних мереж, забезпечуючи підвищення точності обробки даних у динамічних середовищах. Класичні 

підходи заклали фундамент для оцінки невизначеностей через статистичні та нечіткі механізми, тоді як 

машинне навчання розширило можливості масштабування для виявлення аномалій і прогнозування. Сучасне 

глибоке навчання, з його гібридними архітектурами, досягло рівня, де точність у реальному часі сягає 98–

99%, як показано в експериментах з гібридними моделями для виявлення кіберзагроз і DDoS-атак. Це не лише 

мінімізує вплив шуму та неповноти даних, але і підвищує стійкість систем у критичних галузях, сприяючи 

економічній ефективності та безпеці. 

Майбутні тенденції розвитку в цьому напрямі фокусуються на інтеграції AI з IoT (AIoT), де edge AI 

стає нормою для локальної обробки даних, зменшуючи затримки та енергоспоживання, а predictive 

maintenance знижує простої обладнання на 30–50%. Розвиток розумних міст передбачає AI для оптимізації 

трафіку та моніторингу якості повітря, тоді як agentic AI (автономні агенти) та sustainable intelligence 

забезпечать екологічну ефективність. Зростання ринку IoT, з прогнозованими 20 мільярдами пристроїв у 2025 

році та 40 мільярдами до 2030, стимулюватиме впровадження 5G/6G, blockchain для безпеки та federated 

learning для децентралізованого навчання без витоків даних. Ці тенденції обіцяють економічний ефект у 5,5–

12,6 трильйонів доларів до 2030 року, з акцентом на B2B-застосуваннях. 

Інтеграція edge AI та federated learning дозволить створювати гібридні моделі (наприклад, на базі 

LSTM та GAN), які апробуються на симульованих даних з шумом, досягаючи точності понад 95% у виявленні 

аномалій. Для подальшого розвитку наукового дослідження рекомендується зосередитися на покращенні 

приватності даних через privacy-preserving inference та decentralized intelligence, розробці lightweight deep 

learning моделей для обмежених ресурсів IoT-пристроїв, а також на інтеграції з новими фреймворками для 

ефективнішого collaborative training без обміну сирими даними, з акцентом на реальні застосування в галузях 

охорони здоров'я, фінансів та IIoT, де це допоможе подолати виклики security та efficiency. Практична 

значущість полягає в переході від теоретичних оглядів до реальних впроваджень, де AIoT-тенденції 

забезпечать стійкість систем, зменшать ризики кіберзагроз і оптимізують ресурси в промисловості та 

урбаністиці.   

Таким чином, AI став невід'ємним інструментом для безпечних та ефективних IoT-систем, з 

потенціалом економічного впливу в трильйони доларів до 2030 року. Подальші дослідження повинні 

фокусуватися на стандартизації гібридних моделей, етичних регуляціях та тестуванні в реальних сценаріях 

для повного використання потенціалу AI в IoT. 
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