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MODELLING OF HYSTERESIS BEHAVIOUR OF NICKEL-TITANIUM SHAPE
MEMORY ALLOY USING ARTIFICIAL NEURAL NETWORK

Shape memory alloys (SMAs) are a class of materials that have the ability to return to their previous shape when exposed
to temperature or mechanical stress. The main functional properties of these alloys, the shape memory effect (SME) and superelasticity
(SE), make them indispensable in various industries. The SMA superelasticity is the ability of a material to return to its original shape
after loading and unloading due to transformations between austenite and martensite. These phase transitions are accompanied by
hysteresis, which can be observed in the stress-strain diagram. In this study, the hysteresis behavior of SMA, particularly nickel-
titanium alloy (NiTi or Nitinol), was modeled using artificial neural networks. The use of neural networks in the study made it possible
to obtain accurate material strain predictions and reduce the number of actual experiments. The results showed the high accuracy of
the prediction model, which indicates the prospects of using artificial neural networks in the study of SMA characteristics.
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TUMOILYK Jimutpo, ICHIN Omner

TepHOMiNECHKNI HALIOHATBHUI TEXHIYHM yHIBepcuTeT iMeHi IBana [Tymros

MOJIEJIOBAHHA I'"CTEPE3UCHOI IIOBEJITHKA HIKEJIb-TUTAHOBOI'O
CILTABY 3 HAM'SITTIO ®OPMHU 3 BUKOPUCTAHHSAM IITYYHOI HEMPOHHOI
MEPEXI

Crinasu 3 nam'arrio gopmm (CID) € knacom matepiasnis, ki MatOTb 34aTHICTL 10BEPTATUCS A0 CBOEI MONEPEAHBOI popmu
17i43 BI/IMBOM TEMIIEPATY P 360 MEXAHIYHOIO HaBaHTaXeHHS. OCHOBHI QYHKLIIOHA/IbHI BJIACTUBOCTI LUMX CI/IaBiB, eQekT rnamati popmm
78 HaANpyXXHICTb, PO6/ISATL IX HE3aMIHHUMM B PI3HNUX rasiy3sx. HaanpyxwHicte Cl1® ro/sira€ y 34aTHOCTI Marepiasy noBEPTATUCS 40
1104aTKOBOI YOPMY MTICTISI HABAHTAXEHHST Ta PO3BAHTAKEHHS 33BASKYN MEPETBOPEHHAIM MK 3YCTEHITOM | MapTeHcuToM. Lfi @azosi
11EPEXOAU CYTIPOBOMXKYIOTHCS LLUMPOKUM [ICTEPEINCOM, KMV MOXKHAE CIIOCTEDIraTV Ha [iarpami HarnpyXeHHs-4eqgopmayis. ¥ AaHOMy
AOCTTIKEHHI METOLOM LUTYYHUX HEUPOHHNX MEPEX CrIPOrHO30BaHO riCTEPE3NCHY MOBEZIHKY CIT®, 30KpeEMa HIKEb-TUTaHOBUX CI/IaBIB
(NITi abo Nitinol). 3acTocyBaHHs HEHPOHHUX MEDEX Y AOC/TIMKEHHI JO3BO/IMIIO OTPUMATHU TOYHI MPOrHo3u Aegopmalii matepiany i
SMEHLLINTY KIJTBKICTE PaKTUYHNX EKCIIEPUMEHTIB. Pe3y/ibTaty 10Ka3aan BUCOKY TOYHICTb MOAESI A/1 MPOrHO3yBaHHs, O CBIAYATE
PO NEPCIIEKTUBHICTL 3aCTOCYBAHHS LUTYYHUX HEVDOHHUX MEDEX Y BUBYEHHI XapakTepmcTuk SMA.

Kto4osi cnosa: SMA, malumrHHe HaBydarHs], Nitinol, HedpoHHa MEDEXa, riCTEDESHC.
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Introduction

Shape memory alloys (SMAS) are a class of materials that have the unique property of returning to their
previous shape or structure. This property is based on phase transformations that occur in the alloy when the
temperature or load of the material changes. The Shape Memory Effect (SME) and Superelastic behavior (SE)
determine the functional properties of SMA [1].

Due to their unique properties, namely the SME and SE effects, SMAs are widely used in aviation [2],
medicine [3] [4], robotics [5], automotive and construction [6].

The superelasticity of a material is its ability to return to its original shape after being loaded and unloaded.
This effect is due to the transformation of austenite into martensite, which occurs under loading. During unloading,
the transformation back to austenite occurs. Phase transitions in such alloys are characterized by wide hysteresis. The
hysteresis can be observed in the stress-strain diagram during the loading and unloading of SMA specimens.

Nickel-titanium alloy NiTi, known as Nitinol, is one of the most widely employed SMAs. The purpose of
this study is to predict Nitinol hysteresis loops using a supervised machine learning method, namely a neural network.

In modern research, artificial neural networks play an essential role in modeling complex physical processes
[7] [8] [9] [10]. Hysteresis curves are complex nonlinear relationships between stress and strain that are difficult to
describe using traditional mathematical models. This study used a neural network to predict the material strain in
SMAs depending on the applied stress. Also, the dissipated energy during the loading-unloading cycle was calculated

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2025, Issue 2

285


https://doi.org/10.31891/2219-9365-2025-82-40
https://orcid.org/0000-0003-0246-2236
mailto:dmytro.tymoshchuk@gmail.com
https://orcid.org/0000-0002-9820-9093
mailto:oleh.yasniy@gmail.com

Miscnapoonuii HayKoeo-mexHiuHuiL JHcypHan
«BumiproganbHa ma o64yucioganibHa mexHika 8 mexHoJ102i4HUX npoyecax»
ISSN 2219-9365

based on the hysteresis loops predicted by the neural network and compared with the energy obtained from
experimental hysteresis loops. The use of neural networks in such studies allows us to obtain more accurate and
flexible models for analyzing and predicting the behavior of SMAs, which is essential for developing new technologies
and applications of these materials.

Main part

The experimental data from [11] were used to train, validate, and test the neural network. In [11], there was
studied a wire with a diameter of 1.5 mm made of NissgTiss2, manufactured by Wuxi Xin Xin Glai Steel Trade Co.,
LTD. The length of the specimen was 210 mm, the elastic modulus in the austenitic phase (Ea) was 52.7 GPa, and the
stress cam at the beginning of the transformation was 338 MPa. The experiment was performed at room temperature
on a servo-hydraulic testing machine STM-100.

Uniaxial tensile tests were performed under sinusoidal cyclic loading in the controlled stress mode. During
the test, the displacement (displacement) and elongation of the wires were recorded. Elongation was measured using
a BISS model Bi-06-308 extensometer with a maximum error of 0.1%, and displacement was measured using an
inductive sensor model Bi-02-313, with an error of no more than 0.1%. Stresses and strains were determined from the
registered force-elongation relationships obtained from the Test Builder program [11].

The input data for the neural network consisted of stress and cycle number, and the output parameter was the
material strain. The cycle number is an index indicating the number of the loading-unloading cycle. For training and
testing the neural network, 100-120 cycles of loading and unloading of SMA material were used. The train_test_split
function split the sample into training and testing. The training and testing samples contained 70 and 30 percent of the
total data set, respectively.

To customize the architecture and training process of the neural network, there were optimized the
hyperparameters. The following hyperparameters were set in the model creation function: the number of neurons in
two hidden layers (units_1, units_2), and the probability of neuronal dropout (dropout_1, dropout_2). The present
study employed the RandomSearch from the keras_tuner library to automatically find the best values for the
hyperparameters. Hyperparameters such as the number of neurons, the probability of neuronal dropout, and others
were randomly selected for each sample. After the hyperparameter search was completed, the best model was
automatically selected based on the selected evaluation metric. To select the best model, we used the evaluation metric
val_mean_squared_error. This metric measures the average of the squared differences between the predicted and
actual values on the validation dataset. The lower the value of this metric, the higher the accuracy of the model on the
validation data. In the search process, each model was evaluated by this metric, and the one with the lowest
val_mean_squared_error was considered the best. Accordingly, this model also had the most optimal values of
hyperparameters.

Figures 1 and 2 graphically show the search for the best hyperparameters for predicting the SMA loading
and unloading stage.

units_1 dropout_1 units_2 dropout_2  train.epoch_learning_rate train.epoch_loss  validation.epoch trainsepoch_mean_walidatisnzepoch_mean_squared
030 0.40 0.0015 o 2 a
220 7 ;
028 246 /] /] 0224 /] 0.204]
o6 0.38H 0.0014 0424 0AZAN 7
200 - 26 220 -] / \ 020+ AN 0,20
024 036 - 0.0013 - 011 7 {14 \ Vi
27 200 : \ 0184 / 0.18 -
180 - 0:22 7 /4 f
0.34 | 0012 - \ N \Y
2 _nzﬁ 180/ 0.10 - VARLE /0.10— A\ 016 |
160 o 078 N 032 0.0047 | /14 / N,
/ 014
016 0.00 4 0.00
140 01a ] a0 0.30 ] 0.0010 R 012 / \ 0124
s 0.42 120 \ 028~ ? 9 s \n 10 / \U'UE 7 \ 010
g;g: 100 -] \0.26 0008 | 0.07 %0.08 U:g\? B Yo 06
1004 0.06 80 0i24 0.0007 | 0:05' d\@' ‘06, ‘;\-U\E‘
3 h
80 0.047 &0 0.22] 0.0006 - o5 0044 .05 0.04g]
0.02 4M 3\ : 002 T 002
R 0:00-] 020 . N S 3 02

Fig. 1 Finding the best hyperparameters of the neural network for predicting the loading stage
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Fig. 2 Finding the best hyperparameters of the neural network for predicting the unloading stage
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Figures 1 and 2 show the best model in green, which is automatically selected based on the evaluation metric
to predict 125 and 130 cycles of loading and unloading of SMA materials.

The best model for predicting the load period contains two hidden layers with 64 and 192 neurons,
respectively. The probability of randomly disconnecting neurons during training is 0.2, which means that 20% of the
neurons will be randomly disconnected at each training iteration for each hidden layer.

The best model for predicting the unloading period contains two hidden layers with 96 and 224 neurons,
respectively. The probability of accidental disconnection of neurons during training is 0% for the first hidden layer
and 30% for the second.

Both models have a ReLU activation function in all hidden layers, with a single neuron in the output layer
and a linear activation function. Both models also use the Adam optimization algorithm, which automatically adjusts
the learning rate for each model parameter. The models calculated the mean_squared_error (MSE) and
mean_absolute_error (MAE) metrics. The metrics are used to evaluate model performance and do not affect the
optimization process during training. They provide additional information about the model's accuracy.

The EarlyStopping function was used to stop model training automatically. This function allows to stop the
model training if no improvement in the loss metric on the validation dataset is observed for a certain number of
epochs. After setting up EarlyStopping, the function is passed as a callback to the model fit method. Figures 3 and 4
show the graph of the neural network loss function for the training and validation datasets for the loading (Up
Direction) and unloading (Down Direction) stages of the sample using Early Stopping.
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Fig. 3 Graph of the neural network loss function for predicting the loading stage of an SMA sample
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Fig. 4 Graph of the neural network loss function for predicting the unloading stage of an SMA sample
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The graph shows no signs of overfitting. Both curves (train and validation loss) remain consistently low and
do not diverge over time. The model demonstrates good generalisability.

Figures 5 and 6 show the hysteresis loop for the 125th and 130th cycle of the SMA loading and unloading
stage, constructed using a neural network and the corresponding experimental data. The prediction results are very
close to the experimental data. When predicting the 125th cycle, the MAE metric was 0.03, when predicting the 130th

cycle, the MAE was 0.04.
As expected, the prediction of the 130th cycle of loading and unloading SMA is less accurate than that of the

125th cycle. However, despite this, the prediction accuracy is relatively high, making it possible to reduce the number
of actual experiments significantly.
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Fig. 5 Predicted and experimental (original) hysteresis loop for 125 cycles and its area

Hysteresis Loop for Test Cycle 130
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Fig. 6 Predicted and experimental (original) hysteresis loop for 130 cycles and its area

To calculate the areas of the hysteresis loops, we used a software implementation of the trapezoid method.
The areas of the hysteresis loops are numerically equal to the dissipated energy Wdis. The values of Wdis for the
experimental and predicted by the neural network hysteresis loop curve are 4.2416 MJ/m?® and 4.2540 MJ/m? for the
125th cycle and 4.5084 MJ/m?® and 4.6134 MJ/m? for the 130th cycle, respectively.

Conclusions
This study demonstrated that the optimized artificial neural network could reliably reproduce the nonlinear
hysteresis behavior of a NiTi-based shape memory alloy. The automated search for hyperparameters ensured the
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construction of accurate models for the loading (64 and 192 neurons) and unloading (96 and 224 neurons) stages. The
obtained values of the MAE metric were 0.03 for the 125th cycle and 0.04 for the 130th cycle, which indicates high
prediction accuracy. The predicted hysteresis loops closely matched the experimental data, and the deviations in the
calculated energy dissipated in the cycle did not exceed 0.3 % for the 125th and 2.3 % for the 130th cycles. Further
development of the study involves the use of recurrent neural networks (RNNSs), in particular LSTM and GRU
architectures, to more accurately account for the history of cycles and improve the extrapolation ability of the model.
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