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SHAPE MEMORY ALLOYS AND MACHINE LEARNING: A REVIEW 
 
Shape memory alloys (SMAs) have found widespread application in various fields of science and technology due to their 

unique properties, such as superelasticity and shape memory effect. These alloys retain their initial form by memorising it between 
two transformation phases, which is temperature or magnetic field-dependent. The application of such materials is straightforward. 
The alloy can be deformed by force and recover to its initial shape or size after heating over a specific temperature. There are a lot 
of various kinds of SMA, for instance, Fe–Mn–Si, Cu–Zn–Al, and Cu–Al–N, and every type of SMA is applied specifically, though Nitinol 
Ni-Ti is ubiquitous because of its stable properties 

 SMAs are widely used in medicine, the aerospace industry, motor building, civil engineering, dentistry, etc. During their 
operation, structural elements made of SMAs undergo long-term cyclic loading that can lead to premature loss of functional properties, 
exhaustion of lifetime, and subsequent failure. Therefore, ensuring sufficient functional properties and endurance of SMA is necessary. 
Often, the experiments are quite costly and time-consuming and require expert knowledge.  Therefore, it is crucial to model the 
functional and structural properties of SMAs by employing AI (Artificial intelligence) and machine learning (ML) methods. 

AI can be employed to model SMA behaviour.  AI is actively used in material science and fracture mechanics ML is a part 
of AI that can efficiently solve complicated tasks. This study aims to perform a comprehensive review of the application of ML methods 
to estimate various properties of shape memory alloys.  A comprehensive analysis of ML methods was performed as applied to 
modelling various properties of SMAs. Several studies concern the application of methods of AI and ML to solve such problems. In 
general, AI and ML methods are promising and powerful tools to model the SMAs properties. Nevertheless, there is always room for 
improvement and further elaboration of the aforementioned methods and approaches for modelling the functional and structural 
properties of SMAs 
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СПЛАВИ З ПАМ’ЯТТЮ ФОРМИ І МАШИННЕ НАВЧАННЯ: ОГЛЯД 

 
Сплави з пам'яттю форми (СПФ) широко застосовують у різних галузях науки і техніки завдяки їхнім унікальним 

властивостям, таким як псевдопружність і ефект пам'яті форми. Загалом, згадані вище сплави зберігають свою початкову 
форму, запам’ятовуючи її між двома фазами перетворення, що залежить від температури або магнітного поля. Застосовувати 
такі матеріали нескладно. Сплав можна деформувати і відновити його початкову форму або розмір після нагрівання при певній 
температурі. Існує багато різних типів СПФ, наприклад, Fe–Mn–Si, Cu–Zn–Al та Cu–Al–N, і кожен тип СПФ застосовують окремо, 
хоча Nitinol Ni-Ti можна знайти повсюдним через його стабільні властивості. 

 СПФ широко застосовують у медицині, аерокосмічній промисловості, моторобудуванні, цивільному будівництві, 
стоматології та ін. Під час експлуатації елементи конструкцій з СПФ зазнають тривалих циклічних навантажень, що може 
призвести до передчасної втрати функціональних властивостей, вичерпання ресурсу та подальшого виходу з ладу. Тому 
необхідне забезпечення достатніх функціональних властивостей і довговічності СПФ. Часто експерименти є досить дорогими 
та тривалими та вимагають експертних знань. Для моделювання поведінки SMA можна використовувати штучний інтелект 
(AI). ШІ активно використовується в матеріалознавстві та механіці руйнування. Машинне навчання (МН) є частиною ШІ, яка 
може ефективно вирішувати складні завдання. Тому вкрай важливо моделювати функціональні та структурні властивості СПФ 
за допомогою методів ШІ та МН. 

Мета даної статті - здійснити комплексний огляд застосування методів МН для оцінки різних властивостей СПФ. 
Проаналізовано методи МН для моделювання різних властивостей СПФ. Кілька досліджень стосуються застосування методів 
штучного інтелекту та машинного навчання для вирішення таких проблем. Загалом, методи ШІ та МН є перспективними та 
потужними інструментами для моделювання властивостей СПФ. Тим не менше, завжди є місце для вдосконалення та 
подальшої розробки вищезгаданих методів і підходів до моделювання функціональних та конструкційних властивостей СПФ.  

Ключові слова: сплави з пам’яттю форми, машинне навчання, штучний інтелект, нейронна мережа, функціональні 
властивості. 
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INTRODUCTION 

Shape memory alloys (SMAs) gain a vast attention due to their unique shape memory effect (SME) and 

superelasticity (SE) caused by the martensitic transformation (MT) and its reverse transformation [1, 2, 3, 4]. 
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SMAs are metallic alloys that can retain their initial form by memorising it between two transformation 

phases: temperature or magnetic field dependent. The application of such materials is straightforward. The alloy can 

be deformed by force and recover to its initial shape or size after heating over a specific temperature [5]. There are a 

lot of various kinds of SMA, for instance, Fe–Mn–Si, Cu–Zn–Al, and Cu–Al–N, and every type of SMA is explicitly 

applied, though Nitinol Ni-Ti is ubiquitous because of its stable properties [6]. SMA is widely used in medicine [7], 

the aerospace industry [8], motor building [9], civil engineering [10], etc. During their operation, such elements 

undergo long-term cyclic loading that can lead to premature loss of functional properties, exhaustion of their lifetime, 

and subsequent failure. Therefore, ensuring sufficient functional properties and endurance of SMA is necessary. 

Often, the experiments are pretty costly and time-consuming and require expert knowledge. Therefore, it is 

crucial to model the functional and structural properties of SMAs by employing AI and ML methods. 

 

MAIN PART 

Some works are related to solving problems of fracture mechanics by employing AI and ML methods. For 

instance, the strength and lifetime of structural elements were predicted in the studies [11, 12]. One of the pioneers in 

the field of prediction of short cracks by NN was G. M. Seed and G.S. Murphy [13]. 

The endurance limit and fatigue limit at various stress ratios were forecasted in the paper [14]. The work 

determined the crack closure parameters by employing NN [15]. In the studies [16], the cumulative distribution 

function of fatigue lifetime was predicted using NN. The proposed model had two input neurons and one output 

neuron. The inputs of the mode were the stress value S, and time t, when the stress was applied. The input dataset was 

based on the experimentally determined S-N-P curves for steel SAE 8620. The number of neurons on the hidden layer 

was taken as 5, then increased to 10, and finally to 15. The value of the maximum likelihood function computed with 

the optimized lognormal distribution function was chosen as the loss function L. Therefore, a NN predicted the 

maximum likelihood function value better than that obtained with the lognormal distribution function. The neural 

network training was stopped when the value of L obtained with this model was superior to that achieved with the 

lognormal distribution. Afterwards, these approaches were further elaborated in the studies [17] to estimate the 

residual lifetime based on the analysis of the damage model in the case of a wide-band Gauss process with two peaks. 

In the study [18], an NN was employed to identify small fatigue cracks. In the paper [19], a fatigue growth rate was 

predicted using machine learning. In the work [20], a new approach was proposed to assess fatigue damage based on 

NN. It was shown that the NN-based approach showed a higher accuracy of lifetime prediction of chassis components 

for specific loading sequences in comparison with the Palmgren-Miner rule. In the study [21], an alternative method 

was proposed that allows the prediction of fatigue lifetime under random loading based on image recognition using 

NN. High correlation coefficient and best-fit coefficients were obtained in comparison with rainflow matrix method, 

which is based on Miner rule. Machine learning methods in recent years have frequently been employed to create 

SMAs with optimal functional properties and to predict their physical and mechanical properties, chemical 

composition and radii of elements atoms [22], temperature dependencies of pseudo-elastic recovery strain [23]. 

Artificial intelligence (AI) can be employed to model SMA behavior. This field has changed drastically in 

the course of history. AI is actively used in material science and fracture mechanics [24, 25]. 

Machine learning (ML) is a part of AI [26] that can efficiently solve complicated tasks. It showed remarkable 

success in the field of smart materials modelling [27, 28]. Material discovery is performed by AI methods [29].  

In the study of [30], Artificial Intelligence Material Selection (AIMS) framework was developed and 

elaborated. This framework is sophisticated software based on machine learning methods that allow exploring and 

discovering SMA with desired properties. In this study. there were spotted SMA with a minimum transformation 

range and an actuation strain of at least 1.5% under an applied stress of 50 MPa or more. The dataset comprised of 88 

features concerning materials composition, processing, and test parameters, and 26 material responses regarding the 

functional properties and microstructure characteristics. Random Forest, Extreme Gradient Boosting, and Deep Neural 

Network regressors were employed, and hyperparameters were tuned by Hyperopt. For the NN, a ReLU activation 

function was utilized at each layer. L2 regularization and dropout were employed with an optimum dropout rate of 

0.4 to avoid overfitting. Early stopping also improved model robustness and the loss was analyzed with the binary 

cross-entropy (CE) method, comparing the ground truth and predicted properties and updating the weights and biases 

via back propagation and gradient descent to minimize the loss function. 

The paper of [31] identified NiTiHf alloys that can be used as actuators in space. Seven machine learning 

(ML) models were tested, and the best-fit model was chosen to determine new alloy compositions with the pre-set 

transformation temperature (Ms), thermal hysteresis, and work output. There were ulitilized the following models: 

Linear regression model, Polynomial regression model, Support vector regression with linear kernel, Support vector 

regression with polynomial kernel, Support vector regression with rbf kernel, K-nearest neighbouring KNN, and NN. 

The algorithm employed was as follows. The transformation temperature (MS), thermal hysteresiss (TH), and work 

output (WO) were predicted by corresponding ML method. The algorithm starts with data collection and pre-

processing. MLMS was trained, tested, and validated as the first step of the ML training process, identifying new 

NiTiHf alloy compositions. The number of compositions depends on the user’s requirement and their customizability. 

Afterwards, MLTH was trained, tested, and checked. The composition identified from the MLMS was utilized to 
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predict the TH for the compositions. The compositions with larger TH were brought forward. trained, tested, and 

validated via MLWO to find the WO for the compositions filtered from MLTH . The compositions with larger WO 

were chosen as final compositions. In that study, the K-nearest neighbours ML model showed the best results in 

discovering NiTiHf alloys with stable, functional properties with small root mean square errors (RMSE). For MS, 

RMSE = 5.11, as for TH, RMSE = 1.17, and, for WO, RMSE = 1.21. 

In the paper of [32], the ML approach was proposed, which was specifically designed considering the 

dynamic SMA behavior. This approach effectively allows determining the thermodynamic parameters of SMA. The 

proposed method is based on feed forward artificial neural network (ANN) architecture. After training, the ANN can 

find the required model parameters from cyclic tensile stress-strain tests. The elaborated method was applied on SMA 

wires and agreed well with experimental data. 

In [33], the aim was to find out whether video data analysis methods in conjunction with ML approaches can 

be employed to build a computer vision based predictive system to forecast a force generated by the movement of a 

SMA body. It was determined that video capture of the SMA body bending by means of computer vision method into 

a machine learning model, can forecast the amount of actuation force generated by the body. The elaborated approach 

combined computer vision and machine learning to describe novel SMA materials and estimate force generated by a 

moving SMA body under external excitement. The video of a moving SMA body was obtained via infrared digital 

camera, whilst measuring the force. The measured force was used ground truth for all future modelling. The change 

in the position and shape of the SMA body compared to its original position and shape under excitement, was taken 

from the video frames. This data about shape and position were correlated with the separately measured generated 

force for using the proposed predictive modelling. It was chosen to use vision based supervised Restricted Boltzmann 

Machine (RBM) approach together with a machine learning classifier algorithm to make this estimation. RBM based 

feature extraction and Random forest classification algorithms allowed to get 93 %  force and stress prediction 

accuracy. 

In the study of [34], a deep neural network (DNN) was used to improve the design of experiments of SMA 

electrochemical machining (ECM). The DNN employed in this paper had four layers. The input layer had 3 neurons. 

The first hidden layer had 50 nodes, the second layer comprised of 20 nodes, and the third layer consisted of 10 nodes. 

Each layer except the output utilized ReLU as an activation function and Softmax function was used on the output 

layer. A Back Propagation Algorithm with coefficients based on the Gradient Descent method was employed. To 

avoid overshooting, the learning rate was tested and the result was set at 0.001. Also, batch size was set to 3, and the 

Adam optimizer was taken with proper step direction and step size. The machining time, voltage and inter-electrode 

gap (IEG) were the inputs, and the hole size and depth were predicted by DNN. The DNN predicted that the values 

were quite consistent between 98.6% and 100.6%. It was determined that DNN is a more useful method than 

conventional approaches. The machining results were forecasted with high precision by applying ECM and DNN to 

SMA.  

In the work of [35], SMA was employed in robotic hand. A reinforcement learning (RL) algorithm was 

applied to the above-mentioned hand actuated by SMA to control motion. The elaborated hand can achieve the 

required bending state and efficiently take the object with the attained bending state. 

In the study of [36], a method was proposed to model the behavior of SMA by employing an NN. This ANN 

allows accurate and effective prediction of SMA displacement and temperature. There was presented a method to 

eliminate the position sensor using (NN) to compensate for the non-linearity. The proposed model predicts 

displacement and temperature. The study results show that NN are much more effective at modeling SMAs. 

In the work of [37], AI that consisted of Computer Vision (CV) and ML approaches were applied to automate 

SMA characterization process. The authors discovered that an Extreme Gradient Boosting (XGBoost) regression 

model-based ML system trained on a quite large dataset can achieve 99% overall prediction accuracy. The elaborated 

system contributes largely towards material design optimization of machine SMA foils. 

In [38], a deep learning method was utilized to study the behavior of hyperelastic materials in medicine. AI 

was utilized to various characteristics of smart materials, such as composites and sandwiches (CSs).  The bending 

strength was modelled in [39]. The authors built ANNs in MATLAB and compared the modelling results with the 

experiments. The Levenberg–Marquardt (LM) algorithm for training was verified and its results were checked against 

the backpropagation algorithm. The metrics for the comparison were as follows: performance, regression correlation 

(R), and mean squared error (MSE).  

 

CONCLUSIONS 
A comprehensive analysis of machine learning methods was performed as applied to modelling various 

properties of shape memory alloys. The advantage of application such models is that it avoid in certain cases the direct 

experiment provided the sufficient amount of data exists. The experimental studies can be costly and require a lot of 

human labour, expensive laboratory equipment and time. As for the drawback of these models, sometimes they are 

not quite explainable and act in certain cases as a black box. In general, the type of ML model that is best in terms of 

chosen metrics depends heavily on the dataset and the solved problem. In some cases, NN are the best, while in the 

others KNN are best, and in some others SVM outperforms the others. There is no unique recipe which method will 



Міжнародний науково-технічний журнал  
«Вимірювальна та обчислювальна техніка в технологічних процесах» 

ISSN 2219-9365 

 

International Scientific-technical journal 
«Measuring and computing devices in technological processes» 2025, Issue 2 

 

16 

provide the best results and trials and errors method should be utilized. In general, the methods of AI and ML are quite 

promising and are powerful tools to model the properties of shape memory alloys. 
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