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ASPECTS OF APPLICATION OF NEURON NETWORK IN CRYPTOGRAPHY

The article analyzes the possibilities of using neural networks in cryptography to increase the security of encryption keys.
The authors focus on growing cyber threats and the importance of implementing modern technologies for information protection.
The main goal of the research is to evaluate the effectiveness of the neural network in the exchange of encryption keys, based on
the achievements in the field of neural cryptography, as well as the development of new methods of protection against cyber
threats. The authors created a neural model that is based on the concept of a parity tree and is used for the exchange of
encryption keys. At the preparatory stage, a detailed analysis of existing models of neural networks was performed to assess their
compliance with the main goal of the project. Using knowledge from similar studies, the authors developed a special neural mode/
in the Python programming language that implements the theoretical foundations. The next stage included the creation of a test
environment that allowed for thorough evaluations, guaranteeing the stability and reliability of the neural network in various
conditions. The proposed neural network model can become a secure alternative to the traditional Diffie-Hellman key exchange
method. In addition, its expected resistance to quantum decryption takes an important step in strengthening cryptographic
protocols against new threats in the age of quantum computing. The model shows high efficiency even in simple configurations.
The ability of neural networks to quickly adapt to new threats is especially emphasized, which is critically important for ensuring
security in conditions of change. The study also shows that the depth of synaptic connections in a neural network makes it much
more difficult for attackers to break the key, reducing the chances of success. The findings highlight the wide range of potential
applications of neural networks in areas such as cybersecurity, telecommunications, and financial forecasting. Despite certain
difficulties associated with algorithms and high requirements for computing resources, neural networks show significant potential for
improving cryptographic systems.
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AHTOHEHKO Aprem
HauionansHuii yHiBepcHTET 6iopecypciB 1 MPUPOJOKOPUCTYBaHHS YKpaiHu

BYPAUMHCBHKMIA Auppiit, COJIbCbKWM Mauuin, TBEPJIOXJIIB Apceii,
MILIKYP FOpiit, 3IHAP [enuc

JlepsxaBHuil yHiBepcUTeT iHYOPMAIIHHO-KOMYHIKAI[IHUX TEXHOJIOT1H

ACIIEKTH 3ACTOCYBAHHS HEHPOHHUX MEPEX JIJISI KPUIITOT PA®IT

Y crarri aHanizyroTECs MOXJ/MBOCTI 3aCTOCYBAHHS HEMPOHHNX MEDEX Yy KPUNTOrpadii Ans nigBuiyeHHs 6e3rnek
LINQPPYBaTIbHUX K/IIOYIB. Y CTaTTi aKUEeHTYIOTb yBary Ha 3pPOCTarYvX Kibep3arpo3ax | Bax/MBOCTI BIIPOBAMKEHHS CyYacHnX
TEXHONIOMV 419 3axXuCTy [H@opmaLii. OCHOBHOK METOK [OCMKEHHS € OUIHKG EQPEKTUBHOCTI HEMPOHHOI MEpexi B OOMIHI
LINQGPYBATIBHUMU KITIOYEMY, [DYHTYIOYNCh Ha [OCSIHEHHSX Y CQEDI HEUPOHHOI KpUITTOrpagli, a TaKox pO3po6bKa HOBUX METOLIB
3axXUCTy BIf KibEP3arpo3. ABTOpY CTBOPU/IN HEUPOHHY MOAENL, KA CINPAETLCS Ha KOHLIENLIO AEPEBA MapPHOCTI Ta 38CTOCOBYETLCS
47151 OOMIHY LUNGHDYBA/IbHUMY KITtoYamu., Ha rigrotoByomMy eTani 6y/10 BUKOHaHO AETaSbHMA aHa/Ii3 HasBHUX MOAENEN HEVDOHHNUX
MEDPEX L/15 OLlIHKM iXHbOI BIAMOBIAHOCTI OCHOBHIVY METI MPOEKTY. BUKOPUCTABLLIN 3HAHHS 3 MOJIGHNX AOC/IAXKEHDL, aBTOPH PO3pO6WIN
creyiasibHy HEMPOHHY MOAE/L Ha MOBI nporpamyBaHHs Python, 14o peajnisye TeopetuyHi OCcHOBU. HAaCTyrHwi eTan BKIoYaB
CTBOpEHHS] TECTOBOIrO CEPEAOBULLE, SKE O3BOSNIIO POBECTU PETE/IbHI OLIIHKM, apaHTyroun CTIMIKICTb | HAAMIHICTb HEVPOHHOI
MEPEXI B PI3HNX YMOBaX. 3arpOrioHOBaHa HEVPOMEPEXEBA MOAE/Tb MOXKE CTaTH BE3NEYHOI a/IbTEPHATUBOIO TPAANLIVIHOMY METOAY
06MIHy Kkiodamu figdi-Xesimara. Kpim Toro, it odikyBaHa CTIMKICTb 4O KBAHTOBOrO AELUN@PYBaHHS POBUTL BaX/mBmi KPOK y
3MIYHEHHI KDUITOrpagidHnx rpoTOKO/IB MEPES HOBUMM 3arpo3amu B €rioXy KBaHTOBUX OBYMC/IEHb. Moaesib 10Ka3ye BUCOKY
EQEKTUBHICTE HABITb Y MPOCTUX KOHQIrypaLiax. Ocob/mBO MiKPECTIEHA 34ATHICT HEVPOHHUX MEDEX LUBUAKO aAaNTYBaTUCA A0
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HOBMX 3arpo3, O € KPUTUHHO BaX/TMBUM [/IS1 3a6E3IMEYEHHS OE3IIeKN B yMOBaX 3MiH. [OC/TIIKEHHS TaKOX IMOKA3YE, LYo r/mbuHa

CUHANTUYHNX 3B S3KIB Y HEVPOHHIU MEPEXT 3HAYHO YCKIIAAHIOE 3/TOBMUCHUKAM 3aBAAHHS 3/1aMy K/IHOYa, 3HIKYIOYM LAaHCH HE YCrTiX.

Y BUCHOBKaX MiAKPECITIOETLCS LLUNMPOKMY CIIEKTD MOX/TMBOCTEN BUKOPUCTAaHHS HEVPOHHNX MEDEX ¥ Takux ciepax, sk kibepbesrneka,

TE/IEKOMYHIKaLii 7@ QiHaHcoBe rporHo3yBarHs. [lorpn nesHi TPyAHOLWI, MOBS3aHI 3 a/iroputTMamu 1a BUCOKUMU BUMOraMu A0

0BYNCTII0BA/IbLHIUX PECYDCIB, HEVMPOHHI MEDEXI AEMOHCTDYIOTH 3HAYHM MOTEHLIaN A/1S MOKPALUEHHS KDUITTOMPagiyHux CUCTEM.
KITI0Y40BI C/10Ba.  HEVIPOHHI MEDEXT, KPDUITTOrpagis, Kibepoe3rexa, LWnPpyBaHHS, KITtoY LMGPYBaHHS.

STATEMENT OF THE PROBLEM IN A GENERAL FORM
AND ITS CONNECTION WITH IMPORTANT SCIENTIFIC OR PRACTICAL TASKS

In the course of this work, a neural model based on the parity tree concept was developed and
implemented. The main goal was to evaluate the effectiveness of the neural network in the context of encryption key
exchange, based on advances in the field of neural cryptography.

The results of the research open the way to the development of innovative cryptographic solutions. Using
neural networks, the research contributes to new approaches to encryption, decryption and key management. These
innovations have practical implications as they provide information security professionals and cryptographers with a
diverse set of tools to address complex security challenges, contributing to a more resilient and adaptive
cryptographic infrastructure.

ANALYSIS OF RECENT SOURCES
The ability of neural networks to learn adaptively, revealed in the course of the study, is of practical
importance for the implementation of adaptive security measures. The results can be applied to create cryptographic
systems that learn and adapt to changing cyber threat patterns. This adaptability ensures that security measures
remain effective in the face of dynamic attack strategies, offering a proactive defense mechanism against evolving
threats.

FORMULATION OF THE GOALS OF THE ARTICLE

The primary goal is to address today's challenges associated with an ever-changing threat landscape.
Cryptographic methods, although they are the basis of information security, face new dimensions of complexity in
countering sophisticated cyber threats. By exploiting the adaptability and learning ability of neural networks, this
research aims to provide insights into innovative approaches that can harden cryptographic systems to counter new
challenges. The research aims to delve into the dynamic nature of neural networks and understand how this
adaptability can be exploited for cryptographic purposes. Known for their ability to learn from data and recognize
complex patterns, neural networks are a dynamic element that meets the ever-changing demands of cryptographic
protocols. The goal is to explore how this dynamic nature can be integrated into cryptographic methodologies to
improve their efficiency and responsiveness.

PRESENTING MAIN MATERIAL

The parity tree, a cryptographic construct that has its origins in error-detecting codes, has found practical
applications for the secure sharing of cryptographic keys between multiple parties. At its core, TPM is a neural
network architecture characterized by interconnected nodes structured in layers. The theoretical basis of TPM
involves complex calculations at each node, where input data is multiplied, aggregated and passed through
activation functions. These calculations create a unique mathematical landscape that allows TPM to process
complex patterns and solve complex problems. Understanding the theoretical underpinnings of TPM is essential to
appreciating its computational capabilities and potential applications

X Xz X3 Xgy Xy Xy Xy Xoy Ry Xy Xy Xy ={-1,1}
Fig. 1. Graphic structure of TPM
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The structural complexity of TPM lies in its multi-level architecture, as depicted in Figure 1. Input nodes,
hidden nodes, and output nodes form a complex network in which computations take place. Each level contributes
to the transformation of input data, turning it into a meaningful output. Hidden nodes, in particular, serve as the
computing power of the neural network, embodying the essence of TPM's problem-solving ability. Unraveling this
structural complexity allows us to understand the complex mechanisms that drive TPM's computational capabilities.
TPM training includes specialized algorithms designed to tune network parameters, allowing it to learn and adapt.
Learning algorithms such as Hebban's learning rule and perceptron learning algorithm play a crucial role in building
the intelligence of ANNs. These algorithms contribute to the network's ability to recognize patterns, solve complex
tasks, and adapt to a changing environment. Developing intelligence in TPM involves carefully orchestrating these
algorithms, fine-tuning the network for optimal performance.

Compared to algorithms based on number theory, the neural algorithm has several advantages. First, it is
extremely simple. The learning algorithm essentially acts as a linear filter, which makes it easy to implement at the
hardware level. Second, the computational effort required to generate the key is low. Generating a key of length N
requires only the order of N computational steps. Third, a new key can be generated for each message or even for
each message block. There is no need to store classified information for a long period of time. However, the
generated keys must be secure. An attacker E who writes a message between A and B should not be able to compute
the secret key. Methods of combating such attackers will be discussed below.

Although TPM is based on theoretical complexities, it finds its true essence in practical application. His
ability to recognize patterns and solve complex problems makes him invaluable in a variety of fields. In
cybersecurity, TPM is used for anomaly detection by identifying irregular patterns in data flows. In
telecommunications, it optimizes signal processing, increasing the efficiency of communication networks. In
addition, TPM finds application in optimization tasks, financial forecasting and even in artificial intelligence
research, which emphasizes its universality and relevance in the real world. Despite its computing power, TPM is
not without its challenges. The complexity of learning algorithms combined with the need for significant computing
resources create obstacles to its widespread implementation. However, current research aims to mitigate these
challenges, paving the way for improved TPM implementation. The future of TPM promises improved learning
methodologies, scalability, and integration with new technologies. Overcoming these challenges, revealing the full
potential of MTM and exploring uncharted territories in the field of artificial intelligence and computer science
involves solving these problems.

The theoretical working protocol of the Parity Tree is that each side (A and B) uses its own parity machine
(TPM) to synchronize the weight matrix. TPM synchronization of machines is achieved by the following steps:

1. Initialization of random weight values.

2. Follow these steps to complete synchronization:

2.1. generating a random input vector X;

2.2. calculation of hidden neuron values;

2.3. calculation of the value of the output neuron;

2.4. compare the values of both tree parity machines: a. the outputs are the same: one of the appropriate
learning rules is applied to the weights b. the output data are different: we go to point 2.1.

Once fully synchronized (the wij weights of both TPM machines are the same), A and B can use their
weights as keys. Thus, Parity Tree is a practical and universal solution for secure distribution of shared keys in
cryptographic applications. Whether it is used for secure multiparty computation, cryptographic key management, or
other scenarios requiring shared key generation, Parity Tree integration enhances the security, reliability, and fault
tolerance of cryptographic systems. As researchers continue to explore innovative approaches to key distribution
and cryptographic protocols, Parity Tree is a significant contribution to the development of secure and collaborative
information exchange. In each attack, it is assumed that the attacker E can eavesdrop on the messages between
parties A and B, but has no ability to modify them.

To carry out a brute force attack, an attacker must test all possible keys (all possible values of weights wij).
With K hidden neurons, KxN input neurons, and a weight limit L, this gives (2L+1) KN possibilities. For example,
a configuration of K = 3, L = 3, and N = 100 gives us 3*10253 key possibilities, making the attack impossible with
modern computing power. One basic attack can be performed by an attacker who owns the same tree parity machine
as parties A and B. He wants to synchronize his tree parity machine with these two parties. Three situations are
possible at each step:

Output(A) # Output(B): Neither side updates their weights.

Output(A) = Output(B) = Output(E): All three parties change the weights in their parity machines.

Output(A) = Output(B) # Output(E): Parties A and B update their tree parity machines, but the attacker
cannot do so.

Due to this situation, its learning is slower than the synchronization of parties A and B. It is proven that the
synchronization of the two parties is faster than the training of the attacker. This can be improved by increasing the
synaptic depth L of the neural network. This gives this protocol enough security that an attacker can learn the key
with only a small probability. For conventional cryptographic systems, protocol security can be increased by
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increasing the key length. In the case of neural cryptography, we improve it by increasing the synaptic depth L of
neural networks. Changing this parameter increases the cost of a successful attack exponentially, while user effort
increases polynomially. Therefore, breaking the security of neural key exchange belongs to the NP complexity class.

The resilience of the parity tree to various attacks, as mentioned in the previous sections, positions it as a
secure key exchange method, especially in scenarios where eavesdropping is a priority. One of the main advantages
is its resistance to brute force attacks. Given the huge key space generated by the combination of hidden neurons
(K), input neurons (N), and weight constraints (L), the number of possibilities becomes astronomically large. For
example, even with a relatively modest configuration such as K = 3, L = 3, and N = 100, the number of potential
keys reaches a value that modern computing power considers insurmountable. An intriguing scenario arises when an
attacker owns the same tree parity machine as parties A and B and seeks to synchronize with them. In this case, the
attacker faces problems in maintaining the synchronization rate of parties A and B. Three possible situations at each
step dictate the dynamics of updating the weights. In particular, when Output(A) # Output(B), neither party updates
its weights. If Output(A) = Output(B) = Output(E), all three parties change their weights. However, when Output(A)
= Output(B) # Output(E), parties A and B are in sync and the attacker cannot. This internal limitation slows down
the learning process of the attacker compared to the synchronization of the legitimate parties.

To increase security, the synaptic depth (L) of the neural network can be increased. This strategic setting
introduces a level of complexity that greatly complicates an attacker's ability to learn the key effectively. Thus, the
security of the protocol is strengthened, and the probability of successful learning of the key by an attacker is
minimized. In conventional cryptographic systems, increasing security is often associated with increasing key
length. In the field of neural cryptography, the equivalent parameter is the synaptic depth (L). It is noteworthy that
changing this parameter leads to an exponential increase in the cost of a successful attack, while the effort required
by legitimate users grows polynomially. This characteristic places the security of neural key exchange in the class of
NP-hardness, indicating the level of computational complexity that corresponds to hard-to-solve problems. In
conclusion, the analysis highlights the resilience of the parity tree to potential attacks, providing a secure framework
for key exchange in scenarios where eavesdropping and malicious synchronization attempts are a concern.
Strategically adjusting the depth of synaptic connections adds an additional layer of security, making neural key
exchange a robust and computationally intensive approach to secure communication.

The testing phase was carefully performed and included several iterations with different matrix sizes and
different maximum number values. A careful repetition of each test six times was applied to check the consistency
of the results. To facilitate this comprehensive testing, the Randas library was used. Pandas, a robust open source
data manipulation and analysis library for Python, has proven to be a valuable tool. Her capabilities in creating high-
performance, user-friendly data structures combined with effective data analysis tools have made the process of
working with structured data seamless and efficient. The assessment of differences in settings and synchronization
was expressed on a scale where 100.0 means no network at all. This quantitative metric provided a clear and
standardized measure of performance, allowing for a detailed understanding of network behavior under various
conditions. Complex testing, supported by the versatility of the Randas library, facilitated thorough analysis of
neural network response and synchronization in various scenarios.

Analyzing the Hebbian update results with low values in Table 1, it can be seen that the hacker could only
successfully connect to the first and second complexity levels. As the level of complexity increased, the system
demonstrated a significant increase in resilience, strengthening its defenses against more sophisticated intrusion
attempts. The results of the Hebbian update with average values highlight the robust security of the system, as the
hacker's attempts to connect to the network were consistently thwarted, resulting in negative synchronization values
that indicate complete synchronization reversal, especially for values below —100. This robust defense mechanism
emphasizes the resilience of the network to intrusion attempts. When updating the Hebbian with high values. the
hacker faced insurmountable barriers, failing to establish a connection even once. The constant occurrence of sync
backs further highlights the network's impenetrability in these tests. These results are the most robust among all
iterations, demonstrating the system's strong protection against various attack scenarios.

The comparative analysis presented in Table 2 highlights the significant difference between the Hebbian
and Anti-Hebbian learning mechanisms. In particular, the average minimum synchronization values in Anti-Hebbian
are lower, indicating a higher level of security. Regardless, the main conclusion is that Anti-Hebbian learning makes
it nearly impossible for random guesses or attempts at external synchronization to lead to success. Thus, based on
this evaluation, anti-Hebbian learning appears to be the safer option of the two. Its ability to resist random guesses
and external synchronization attempts improves the overall security of cryptographic applications. This finding
highlights the importance of choosing an appropriate learning mechanism for neural networks in cryptographic
contexts where security is paramount.

The distinction between Hebbian and anti-Hebbian update rules is a key aspect in the field of neural
network learning mechanisms. These rules define the principles governing synaptic plasticity, highlighting various
aspects of the relationship between neuronal activations and the corresponding adjustments in synaptic weights. The
Hebbian update rule works on the principle of synaptic enhancement based on correlated activity. It states that when
neurons exhibit simultaneous and correlated activation, the strength of their synaptic connection should increase.
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This reinforcement, described by the phrase "cells that fire together, bind together," is at the heart of associative
learning and memory formation. Hebbian learning promotes the creation of functional neural circuits through the

strengthening of connections that are consistent with coherent firing patterns.

Table 1
A test of Hebbian update rules with different values
% “ Iteration Network settings
8s k:3,n:4,1:6 k:6,n:8,1:12 k:9,n:12,1:18 k:12,n: 16, I: 24
2 Tg 1 70,36 28,69 -3,80 -17,71
g H 2 102,30 29,90 10,25 -60,20
2= 3 102,30 102,30 -1,94 -37,50
E § 4 46,05 31,81 0,22 -13,19
g 5 102,30 20,36 -13,90 -43,88
§ é 6 65,49 42,23 -44,46 -49,39
< Result 3/6 broken 1/6 broken 0/6 broken 0/6 broken
2 a Iteration Network settings
22 k: 15, n: 20, |: 30 k: 18, n: 24, I: 36 k: 21, n: 28, |: 42 k: 24, n:32, |: 48
2 z 1 84,88 -63,61 -110,95 -171,04
g s 2 -66,34 -117,67 -167,16 -217,84
o E 3 -39,51 -107,90 -160,09 -168,26
TS 4 -41,23 -132,23 -132,14 -118,86
E i 5 -66,31 -122,62 -127,09 -142,68
§ % 6 -87,70 -101,37 -122,59 -148,23
< = Result 0/6 broken 0/6 broken 0/6 broken 0/6 broken
% » Iteration Network settings
gﬁ k:27,n:36,1=54 k: 30, n: 40, I: 60
2S [t -199,60 -231,84
g S |2 -193,90 -264,80
2£ 3 -220,27 -223,40
I=E 4 -170,40 -246,05
52 [5 171,30 -209,00
8= |6 -221,68 -240,98
< = | Result 0/6 broken 0/6 broken

The distinction between Hebbian and anti-Hebbian update rules is a key aspect in the field of neural
network learning mechanisms. These rules define the principles governing synaptic plasticity, highlighting various
aspects of the relationship between neuronal activations and the corresponding adjustments in synaptic weights. The
Hebbian update rule works on the principle of synaptic enhancement based on correlated activity. It states that when
neurons exhibit simultaneous and correlated activation, the strength of their synaptic connection should increase.
This reinforcement, described by the phrase “cells that fire together, bind together,” is at the heart of associative
learning and memory formation. Hebbian learning promotes the creation of functional neural circuits through the
strengthening of connections that are consistent with coherent firing patterns.

The distinction between Hebbian and anti-Hebbian update rules is a key aspect in the field of neural
network learning mechanisms. These rules define the principles governing synaptic plasticity, highlighting various
aspects of the relationship between neuronal activations and the corresponding adjustments in synaptic weights. The
Hebbian update rule works on the principle of synaptic enhancement based on correlated activity. It states that when
neurons exhibit simultaneous and correlated activation, the strength of their synaptic connection should increase.
This reinforcement, described by the phrase "cells that fire together, bind together," is at the heart of associative
learning and memory formation. Hebbian learning promotes the creation of functional neural circuits through the
strengthening of connections that are consistent with coherent firing patterns.

In contrast, the anti-Hebbian update rule embodies the concept of weakening synaptic connections in
response to uncorrelated or time-dispersed neuronal activity. The essence of anti-Hebbian learning is that “cells that
work out of sync lose their communication”. This rule introduces an element of competition by selectively
weakening connections between neurons that do not exhibit correlated firing patterns. Anti-Hebbian learning serves
as a mechanism for network stability, preventing overexcitation and contributing to the accuracy of memory
networks. The fundamental difference lies in the influence of these rules on the dynamics of learning in neural
networks. Hebbian learning facilitates associative learning, memory formation, and the creation of coherent neural
representations. Conversely, anti-Hebbian learning complements this process by facilitating the selective pruning of
less relevant or temporally disconnected connections, promoting network stability and preventing the occurrence of
unpredictable excitation. The interplay between Hebbian and anti-Hebbian learning is integral to network plasticity
and homeostasis. While Hebbian learning adapts synaptic connections to recurrent patterns of activation, anti-
Hebbian learning acts as a regulatory mechanism, maintaining balance in the network by eliminating less relevant
connections. This delicate interplay contributes to the structural and functional dynamics of neural networks,
shaping their ability to adapt to changing conditions while maintaining stability.
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Table 2
Test of Anti-Hebbian update rules with different values

S3 Iteration Network settings
27 k:3,n:4,1:6 k:6,n:8,1:12 k:9,n:12,1:18 k:12,n:16, 1: 24
25 1 94,66 25,39 17,42 -12,85
é = 2 77,30 47,09 5,70 -11,37
< 8 3 69,66 45,36 6,85 -5,95
5 2 4 80,77 57,68 21,28 -1,35
2 e, 5 64,11 49,52 27,76 -39,84
285 6 66,88 45,53 31,47 9,37
<S¢ Result 0/6 broken 0/6 broken 0/6 broken 0/6 broken
s Iteration Network settings
8 ué k: 15,n: 20, I: 30 k:18,n:24,1: 36 k: 21, n:28, 1: 42 k:24,n:32, 1: 48
£ < 1 -48,84 -51,06 -111,55 -141,65
g = 2 -40,45 -38,19 -134,87 -160,69
<y 3 -17,42 -36,97 -121,69 -149,89
5 2 4 -50,87 -42,51 -125,62 -154,71
2o, 5 -22,67 -100,11 -139,64 -108,13
o § 6 -42,64 -55,92 -124,02 -79,74
<59 Result 0/6 broken 0/6 broken 0/6 broken 0/6 broken
28 Iteration Network settings
23 k:27,n:36, =54 k: 30, n: 40, I: 60
5z 1 -123,61 -261,66

2 2 -154,59 -169,85
S<s 3 -163,17 -220,87
g% 4 -156,77 -209,05
I § 5 -133,70 -157,19
5 @ 6 -206,08 -120,30
5: 2 Result 0/6 broken 0/6 broken

The difference between Hebbian and anti-Hebbian renewal rules lies in their respective approaches to
synaptic plasticity. Hebbian learning enhances correlated activity, promoting associative learning and memory
formation, while anti-Hebbian learning weakens uncorrelated connections, promoting network stability and
homeostasis. This subtle relationship between reinforcement and weakening mechanisms is key to understanding the
fundamental principles of neural network learning. In addition to the robust protection provided by Anti-Hebbian
and Random-Walk under various conditions, it is worth emphasizing the adaptability of these rules to dynamic
cybersecurity landscapes. Anti-Hebbian's inherent ability to keep security at a minimal level makes it a reliable
defense mechanism against potential threats, even in scenarios where the hacking machine exhibits advanced
capabilities. Moreover, the Random-Walk rule is the most optimal choice due to its ability to provide reliable
protection not only at low but also at high settings. This dual capability provides resilient protection by adapting to
potential fluctuating network conditions and cyber threats. The adaptability of Random-Walk becomes especially
important when faced with sophisticated attacks or unpredictable vulnerabilities, as it maintains a secure connection
even in the face of a changing threat landscape. Additionally, Hebbian's performance at higher settings, especially in
achieving excellent backward synchronization, highlights its suitability for scenarios where advanced security
measures are paramount. By using Hebbian in such environments, organizations can improve their overall
cybersecurity posture and reduce the risk of sophisticated attacks that may attempt to exploit vulnerabilities at
elevated settings.

In conclusion, a comprehensive analysis of Hebbian, Anti-Hebbian, and Random-Walk rules offers a
nuanced approach to cybersecurity. While Hebbian excels in specific high-tuning scenarios, Anti-Hebbian and
Random-Walk are versatile options capable of providing robust protection in a variety of environments. A strategic
combination of these rules can create a robust defense system that guarantees the integrity and confidentiality of
connections in the face of evolving cyber threats and potential adversary advances. The random walk rule is a
special mechanism in the field of neural network learning that introduces a stochastic element into the tuning of
synaptic weights. Unlike deterministic rules driven by correlation patterns, the Random Walk rule embraces
unpredictability and randomness in exploring the space of synaptic weights. This scientific review aims to highlight
the fundamental principles and implications of the application of the random walk rule in neural networks. In
essence, the Random-Walk update rule introduces a certain level of uncertainty into the adjustment of the synaptic
weights. Rather than relying on an explicit correlation or anticorrelation between neuronal activations, the Random-
Walk rule allows for probabilistic changes. This stochasticity allows the network to pass through a range of states,
potentially facilitating the discovery of new configurations that might not be immediately obvious using
deterministic rules.

The philosophy behind the Random-Walk rule is similar to a random search strategy in the synaptic weight
space. This study is consistent with the notion that the network, through probabilistic settings, can avoid local
optima and explore regions that may lead to more optimal configurations. This element of randomness introduces

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

399




Mixcnapoonuit HayKoeo-mexniuHuil JHeypHan
«BumiprosanbHa ma o64ucnroeasibHa MexHika 8 mexHoJs1I02iYHUX npoyecax»
ISSN 2219-9365

inherent adaptability and flexibility, allowing the neural network to respond to a variety of environmental stimuli.
From a practical point of view, the Random-Walk update rule can be applied in scenarios where a certain degree of
exploration and unpredictability is an advantage. It can help overcome local minima in the learning process,
allowing the network to explore alternative solutions and potentially converge to more globally optimal
configurations. Such adaptability is especially valuable in dynamic environments where deterministic rules may fail
to cope with changing patterns or unpredictable challenges.

Introducing randomness into synaptic weight adjustments, facilitated by the random walk rule, is consistent
with the broader concept of stochastic optimization in neural networks. This concept recognizes that incorporating
randomness into learning processes can be a powerful strategy for avoiding local optima and achieving more robust
and adaptive solutions. The random walk rule in neural networks is a departure from deterministic learning
mechanisms, taking into account stochasticity and unpredictability. This rule introduces a degree of randomness to
synaptic weight adjustments, facilitating the exploration of weight space and potentially leading to the discovery of
more optimal configurations. The Random-Walk update rule illustrates the adaptability and flexibility that stochastic
elements bring to the complex learning dynamics of neural networks.

CONCLUSIONS FROM THIS STUDY
AND PROSPECTS FOR FURTHER RESEARCH IN THIS DIRECTION

The parity tree machine, as a neural network architecture, has promising characteristics for cryptographic
applications. The use of TPM in key exchange protocols introduces a dynamic element to the process, increasing
resistance to potential threats and vulnerabilities. The research aims to understand the intricacies of TPMs, their
ability to adapt to changing data models, and their potential to enhance the security of cryptographic key exchanges.
The main focus of the research is on solving modern problems faced by traditional key exchange mechanisms. By
incorporating TPM, the research aims to offer innovative solutions that go beyond traditional paradigms. This
involves not only protecting the key exchange process from malicious attacks, but also optimizing the computational
efficiency of cryptographic operations.

Further research suggests possible developments beyond the parity tree machine for cryptographic key
exchange. One important perspective is the investigation of real neural encryption/decryption methods. This
development aims to create a symbiosis between existing key exchange machines and true neural
encryption/decryption methods. The trajectory of cryptographic research is dynamic, marked by continuous
development aimed at solving new challenges and using new technologies. If we imagine the future of the
implemented prototype, we can highlight several potential upgrades, the main one being the integration of advanced
architectures, such as the tree parity machine with vector estimation (VV-TPM). In addition, improvements in key
management strategies, diversification of cryptographic algorithms, and scalability considerations are promising
directions for enhancing the cryptographic capabilities of the prototype.

The evolution from the traditional tree parity machine (TPM) to the vector-valued tree parity machine (VV-
TPM) represents a profound leap in the development of neural network architecture. While conventional TPM
excels at reproducing complex patterns using hierarchical structures, VV-TPM extends these capabilities by
introducing vector values of the outputs. Such an addition allows for a more detailed representation of information,
increasing the potential for handling multidimensional data and complex relationships in cryptographic contexts.
The implementation of VV-TPM can improve resistance to modern cryptographic attacks, as the output vector
values provide richer pattern encoding. In addition, the potential of parallelization of calculations in vector
operations can increase the computational efficiency of cryptographic processes. However, the integration of VV-
TPM requires a thorough re-evaluation of learning rules, weight update mechanisms, and synchronization strategies
to adapt to the increased dimensionality of vector outputs.
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