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MULTI-SCALE NEURAL NETWORK-BASED CLASSIFICATION METHOD FOR
SKIN PATHOLOGICAL IMAGES

Skin pathological images contain essential diagnostic information across various scales. To effectively utilize multi-scale
features, this study proposes a classification method based on multi-scale neural networks. The method involves a variable multi-
scale neural network structure with a backbone network and multiple scale input branches inserted at different layers, facilitating
feature extraction and fusion. Two search algorithms — a minimum cost-based search algorithm and a hill-climbing search algorithm
— are introduced to identify the optimal network structure. Experimental results demonstrate that the proposed multi-scale network
outperforms original networks in skin pathological image classification and that both search algorithms efficiently find near-optimal
structures with reduced computational costs.
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LHAM®EH Ysxao

BiHHHMLBKUIA HA[IOHATIBHUI TEXHIYHUN YHIBEPCUTET

BATATOLIKAJBbHUI METO/I KJIACU®IKALIIL HA OCHOBI HEHPOHHOI
MEPEXI JJISI TATOJIOTTYHAX 30BPAKEHD IIKIPA

[18TO/10rYHI 306PAKEHHST LUKIPU MICTSTE BaX/mBy AIarHOCTYHY [HQOPMALIIO B PI3HUX Macltabax. [ e@pekTuBHOro
BUKOPUCTaHHS 6araTtoMaclutabHux @yHKUIM Le [OCTMKEHHS [IPOrOHYE METo4 Kaacu@ikauii Ha OCHOBI 6araToMacluTabHux
HEVIDOHHUX MEPEX. METOf BKIIIOYAE 3MIHHY 6araToMacluTabHy HEVPOHHY MEPEXEBY CTPYKTYDY 3 MariCTPasbHOK MEDEXE Ta
AEKITIbKOMa BXIAHUMY  [IIKamu MAcLUTaby, BCTaB/IEHUMU Ha PI3HUX PIBHSX, LJO [IOJIEMUYE BUAIIEHHS Ta 3/IMTTA O3Hak. /s
BU3HAYEHHS ONTUMA/ILHOI CTPYKTYPpU MEPEXI MPEACTAB/IEHO ABa a/IrOPUTMY TIOLYKY — &/IFOPUTM T1OLLYKY HA OCHOBI MIHIME/IbHUX
BUTPAT | a/IrOpUTM OLLYKY HA MAHOMI. EKCIIEDUMEHTA/IbHI PE3YTIbTATH AEMOHCTPYIOTB, O 3aIpOriOHOBaHa 6araToMacluTabHa
MEPEXA MEPEBEPLLYE OPUIiHA/IbHI MEPEXI B KAACU@IKALIT NaTosioridHux 306PaKeHb LIKIpU | Lo 0buABa aaropuTMu rOLyKy
EQPEKTUBHO 3HAXO[SATH MADKE OMTUMASIbHI CTDYKTYDU 3 SHWKEHUMU OBYUC/IIOBA/ILHUMU BUTPATaAMM.

Y UbOMy AOC/IKEHHI MU PO3/IHY N IPO6IEMY 6araToMacluTabHoOro BWIyYeHHs Ta 06 €4HaHHs O3HaK y natosioridHux
306PaXKEHHSX, 3aIIPOroHyBaBILLM 3MIHHY 6aratoMacluTabHy apXiTeKTypy HEVPOHHOI MEpEXi Ta ABa BIAMOBIAHI 6araToMacluTabH/
a/IrOPUTMU TTOLLIYKY CTPYKTYDH MEPEXI, 3MiHHA 6araToMaclTabHa HEVPOHHA MEPEXE CKIAAAETHCA 3 MAriCTPaIbHOI MEPEXI Ta OAHIEF
abo KifIbKOX rapanesibHux 6araroMaclutabHux BXIAHUX TioK. [lapane/ibHe BBEAEHHS IH@OpMaLIi rpo baratomacitabHe
306paXeHHS HAAAE MEPEXT 34ATHICTb BUTAryBatH 1@ eekTMBHO 00 €aHYBaTH 6aratoMacluTabHi Xapakrepuctvku. LLjob Bu3Hauyntv
onTUMasnbHy CTPYKTYpy 6aratoMaclutabHOI MEPEX], MU 3arpoBafgniIn ABa aaropuTMU MOLLYKY: aaropuTM rOWYKY 3 MiHIMaabHUMU
BUTPATaMy Ta a/IrOPUTM TIOLIYKY 3 MIAHOMOM Ha narop6. AIIropuTM MOLIYKY 3 MIHIME/IbHOK BapTICTIO PO3POG/IeHMI A/ MOWYKY
ONTUMA/ILHOI CTPYKTYpH 3 QIKCOBaHMMMU Ta MIHIME/IbHUMU OOYUCTIIOBA/IbHUMU BUTPATamMy, TO4I SIK a/IrOpuTM MOLYKY Ha rnaropbax
LIYKGE YyA0BI 6araToMacluTabHi MEDEXEBI CTPYKTypu 3a PaxyHOK TPOXU BULUMX OBYUCTTIOBA/IbHUX BUTPAT. EKCrEpuMeHTasIbHI
Pe3y/IbTaTH MPOAEMOHCTPYBA/M, IO 3MIHHE 6araToOMacluTabHa HEVIDOHHAa MEPEXa EPEBEPLLINIIA BUXIAHY MEDEXY 33 EQEKTUBHICTIO
giarHocrvku., O61aBa anropUTMU MOLYKY JOCAITIN MAVDKE OMTUMATIBHNX 3MIHHUX 6araToOMAaCLLTAOHUX CTPYKTYD HEMPOHHOI MEPEXT 3i
3HAYHO MEHLLMMY OOYUCIIIOBA/IbHUMMU BATPATAMU IOPIBHIHO 3 METOAAMU BUYEDIIHOIO [1OLYKY. 30KpeMa, aaropuTM rowyKy 3
MIHIMATIBHUMY BUTDATaMU [TOCTIVIHO BUMAraB HaNMEHLUMX OGYMUCITIOBAIbHUX BUTPAT. L1 MOPIBHSHHS, a/IrOpUTM IOLLYKY HA 11aropoi
4aB OiribLL ONTUMAEsIbHI 6aratoMacluTabHi MEPEXEBI CTPYKTYPH. JOC/iKeHHS abrasuii 6y/10 rpoBEAEHO 418 T04A/IbLIONO BUBYEHHS
TOKPALLEHHS MPOAYKTUBHOCTI 3MIHHOI 6aratoMaciutabHoi MEpPEXi, Pe3y/ibTaty roKaszasm, LYo MOKPALEHA POAYKTUBHICTL 6y/ia
T10B53aHa B EPLLY YEPry 3 A0AaTKOBUM O6aratoMacluTabHuM BBEAEHHSM [HGOpMaLIi npo 306paxerHHs. Lje BiaKpuTTS rigKkpecioe
BaXJ/NBICTb BKITIOYEHHS B6aratoMaclLTabHuX BXIGHUX AGHUX Y HEUPOHHI MEDEXI 471 HA/IZY NMaTO/OMYHOMrO 306PaXKEHHS.

Kito4oBi C/10Ba: METOL, HEVIPDOHHI MEPEX], NATA/IONYHI 306PaXEHHS], PE3Y/IbTaTH, 3MIHU aPXITEKTYDH.

LINTELLIGENT DATA ANALYSIS

Analyzing skin pathological images is a critical task in medical image analysis, especially for the early
detection and diagnosis of skin cancers such as melanoma. Traditional methods rely heavily on the expertise and
experience of pathologists, which can be time-consuming and subjective. With advancements in deep learning and
neural network technologies, intelligent data analysis methods have become increasingly prevalent in medical image
processing. These methods can automatically extract image features, identify lesion areas, and classify them, thereby
improving diagnostic accuracy and efficiency. The primary objective of this study is to develop a multi-scale neural
network-based classification method for intelligent analysis of skin pathological images. Multi-scale neural
networks can utilize information from different scales within pathological images, which contain essential
diagnostic features at various levels. This approach aims to comprehensively capture the details in images, thus
enhancing classification accuracy.

The pathological diagnosis of skin pathological images typically requires pathologists with certain
qualifications and extensive experience. When reviewing skin pathological images, pathologists first observe the
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overall situation of the sections in the low magnification mode of the microscope, identify suspicious lesion areas,
and then use the high magnification mode to examine the morphological characteristics of each cell in the suspected
lesion area and specific cell densities, usually requiring multiple repetitions of the above process until a diagnosis is
reached. Obviously, facing a large number of undiagnosed skin pathological images, this manual diagnostic method
is time-consuming, labor-intensive, and research has shown that there is a 25% diagnostic inconsistency among
histopathology experts in distinguishing benign nevi from malignant melanomas!*- Using computer-aided means to
assist doctors in examining and diagnosing skin images can save a lot of manpower, material resources, and
financial resources, and improve diagnostic efficiency. In recent years, with the powerful capabilities of deep
learning, especially convolutional neural networks, in the field of computer vision, deep learning-based medical
image processing has become a hot topic. Many research works on intelligent diagnosis of skin pathological images
have emerged!-, In the task of pathological image prediction, deep learning methods have achieved performance far
beyond traditional methods.

However, these deep learning methods often directly adopt CNN models for identification, but these
algorithms do not consider the characteristics of skin pathological images. In skin pathological image diagnosis, skin
pathological images have multi-semantics, and key diagnostic information such as tumor size and extent,
histological type, depth of infiltration, mitotic activity, margin status, presence of microsatellite or satellite
metastases differ significantly in different magnification scales. Among them, features such as tumor size and
extent, histological type, depth of infiltration, etc., need to be analyzed based on the overall situation of pathological
tissues, and therefore these features are significant in low magnification pathological images. Features such as cell
mitotic activity, margin status, presence of microsatellite or satellite metastases, etc., require detailed observation of
lesion cells and immune cells, and therefore these features are significant in high magnification pathological images.

Addressing the problem of how to effectively extract and fuse pathological features at different scales, a
skin pathological image classification method based on multi-scale neural networks is proposed. This method
designs a variable multi-scale neural network structure and corresponding two multi-scale network structure search
algorithms. The variable multi-scale neural network consists of a backbone network and parallel inserted multi-scale
image input branches. The parallel input of multiple scale images enables the network to extract and fuse multi-scale
image features. Based on the minimum cost-based search algorithm, this algorithm tests the influence of inserting
input branches at different positions on the current network performance by specifying the priority of inserting
different branch positions, discards input branches and insertion positions that reduce network performance, and
selects favorable input branches to insert into the network. The hill-climbing search algorithm constructs a search
space with all possible insertion positions, selects the most favorable position to insert input branches from the
current search space each time, discards insertion positions that reduce network performance, until adding input
branches cannot improve network performance or the search space is empty. Experimental results with ResNet5081,
EfficientnetBOM, and InceptionV4P! as backbone networks show that the multi-scale neural network achieves
0.4%~2.7% higher accuracy than the original network. Compared with the exhaustive method, the two multi-scale
neural network search algorithms can find multi-scale network models close to the optimal solution at lower
computational costs. Finally, the results of the ablation experiments indicate that the performance gain of the
variable multi-scale neural network comes from additional image inputs.

2. SOLVING THE TASK

2.1 Machine learning model

To enhance the network's ability to extract multi-scale features, a novel multi-scale input neural network
structure, called Alterable Multi-Scale Input Convolutional Neural Network (AMSICNN), is proposed. In a multi-
scale input network, multiple-scale images are used as inputs, and the results are fused in the convolutional layers of
the model. By learning from images of different scales, the model gains the ability to extract deep features of
different scales. The multi-scale feature input network uses single-scale images as input and extracts features from
different abstraction levels of convolutional modules, merging them into other layers to achieve multi-scale feature
fusion. By combining multi-scale input networks and multi-scale feature input networks, the proposed AMSICNN
achieves multi-scale feature extraction and fusion by inputting additional image information into different layers of
the network.

As shown in Figure 1, AMSICNN consists of a backbone network and multiple scale input branches. The
multi-scale input branches are inserted into the backbone network in a parallel manner, and the output features of the
branches are combined with the output features of the layer they are inserted into and then input into the next
convolutional layer (fusion layer) of the backbone network. In the backbone network, input branches are only
allowed to be inserted after downsampling layers, and the number of input branches inserted into AMSICNN can be
changed. By adjusting the insertion positions and the number of input branches, AMSICNN can better adapt to
different pathological image recognition tasks.

As illustrated in Figure 1, each multi-scale input branch consists of a downsampling layer and three
convolutional layers, with convolutional kernel sizes of 1x1, 3x3, and 1x1, respectively. The downsampling layer in
the input branch uses bilinear interpolation sampling, and its sampling rate is determined by the insertion position.
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The image is sampled to the same size as the output features of the layer it is inserted into. The channel numbers of
the three convolutional layers in the input branch are determined by the number of channels of the layer they are
inserted into, with output channel numbers of N/4, N/2, and N, respectively, where N is the number of channels of
the layer they are inserted into. After processing by the downsampling layer and the three convolutional layers, the
input image is expanded into a feature vector of the same size as the output features of the layer it is inserted into.
The output features of the branch are concatenated with the output features of the layer they are inserted into and
input into the fusion layer. The input channels of the fusion layer are doubled to accommodate the insertion of the
branch.
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Fig. 1 Schematic diagram of variable multi-scale neural network
As a new network structure composed of a backbone network and input branches, the number and insertion
positions of the input branches determine the network’s ability to extract and fuse multi-scale features. In
AMSICNN, input branches can only be inserted into convolutional layers after downsampling layers in the
backbone network. Assuming there are M insertion positions in the backbone network, theoretically, 2M - 1
AMSICNN structures can be generated. AMSICNN has great flexibility in design, allowing for the selection of the
optimal AMSICNN structure according to different tasks.

2.2 Multi-Scale Network Search Algorithm

For a backbone network with M insertion positions, 2™ — 1 AMSICNN structures can be generated. For
AMSICNN, the impact of input branches on the network varies at different insertion positions, and when multiple
input branches are inserted, the interaction between input branches can have additional effects on the network's
performance.

The influence of multiple input branches on the network is not a simple linear superposition of the
influence of a single input branch on the network. There is a possibility that inserting input branches may lead to a
decrease in network performance. These characteristics of AMSICNN make it impossible to obtain the optimal
AMSICNN structure through simple calculations. Instead, exhaustive methods are needed to train and test all
AMSICNN networks, requiring a significant amount of computational resources. To address the problem of
searching for the optimal AMSICNN with smaller computational costs, two heuristic search algorithms are proposed
in this section:

(1) Minimum Cost-Based Multi-Scale Network Search Algorithm;

(2) Hill-Climbing Multi-Scale Network Search Algorithm, aiming to quickly find the optimal network
structure.

2.2.1Multi-Scale Network Search Algorithm Based on Minimal Cost
To achieve an optimal multi-scale network structure with minimal computational cost, a multi-scale
network search algorithm based on minimal cost is proposed. The algorithm begins with a backbone network and

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

350



Mixcnapoonuil HayKoeo-mexHiuHuil HeypHan
«BumiproeanbHa ma o64yucnoeasibHa MexHika 8 mexHoJ102iYHUX npoyecax»
ISSN 2219-9365

considers all potential insertion positions as the search space. The priority of each potential insertion position is
determined by its depth in the network, with shallower positions having higher priority. The algorithm tests the
potential insertion positions in order of priority. If inserting an input branch at a given position improves the current
network performance, the input branch is permanently inserted into the network, and the combined network is used
for the next step of the search. Otherwise, the insertion position is discarded. In this algorithm, each insertion

position is tested only once, resulting in a computational complexity of O(M X T), where M is the number of

insertion positions and T is the computational cost of training and testing the model once. The detailed process of
the algorithm is presented in Algorithm 1.

Given a selected backbone network fo(.) and dataset W ,all potential insertion positions
q infy(.)constitute the search space Q@ = {q1,q>, -..,qm}, Where m is the number of potential insertion

positions in f, (.). The positions ¢ are sorted by their depth in the network from shallow to deep. The specific
steps of the algorithm are as follows:

1. The optimal network is initialized as the backbone network fi,est(.) = f5(.) with the highest accuracy
being the accuracy of the backbone network Accp.st = fo(W), ie., the test result of the initial
network f, (. after training on the dataset W/ .

2. Test the impact of an input branch at the i-th insertion position on model performance: Insert an input
branch at position ¢;in the optimal model fj,q<t (. )to form the test model fo ()

1:(i) () = fbest () + fbra\nch (q| )() (1)
Train and test the test model f{i} (. )on the dataset W to obtain the test model accuracy:

Acc; = f(i)(\N) )

3. Compare the accuracy of the test model with that of the current optimal model. If the test model
performs better than the current optimal model, update the optimal model and the highest accuracy; otherwise, the
current optimal model remains unchanged.

4. Repeat steps (2) and (3) until the search space has been fully explored.

5. Output the optimal model fizst (. ).

This approach ensures that the optimal network structure is found with minimal computational expense by
prioritizing and testing each potential insertion position only once.

Algorithm 1
Multi-Scale Network Search Algorithm Based on Minimal Cost

Given: f5,(.), @ ={q1.qG9, -, G} W
Output: f..(.)

=

foest () =fo )
Accyeg = fo(W)
fori = 1 to mdo
sz"J [:) = ﬁ:est(- ) + fbrauﬁ[:m)[:-)
Acc; = fiy (W)
if Ace> Accy.4 then
ﬁ:est(-) = f(z“_u [:)
Acey.g = Acc;
end if
0. end for
1.

return (foe: (- ))

HBOooNoa~wN

2.2.2 Multi-Scale Network Search Algorithm Based on Hill Climbing

Inspired by the hill climbing approach, a multi-scale network search algorithm based on hill climbing is
proposed. Starting with a backbone network and constructing the search space from all possible insertion positions,
the basic idea of the algorithm is to find the optimal insertion position g, in the current search space @ , insert an
input branch at that position, discard input branches that degrade network performance, and repeat the process until
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adding input branches no longer improves network performance or the search space is empty. The detailed process
of the algorithm is presented in Algorithm 2.
The detailed steps of the algorithm are as follows:

1. Initialize the optimal network as the backbone network fi,est(.) = fo(.) with the highest accuracy
being the accuracy of the backbone network Accyes: = fo (W).

2. Test the impact of input branches at all insertion positions g in @ on the performance of the current
optimal model: Insert an input branch at position g; into the optimal model f;,s: (. Jto form the test model f[i}(. ):

f(i) () = fbest () + fbranch (ql)() (3)

Train and test the test model f(i] (. )on the dataset 117 to obtain the test model accuracy:
Acc, = f, (W) 4

3. Update the optimal model f,.s¢(.), highest accuracy, and search space based on the test model
accuracies. Select the test model with the greatest performance improvement as the optimal model for the next
search round, with its accuracy as the highest accuracy. If no test model shows performance improvement, the

optimal model remains unchanged. The new search space consists of all insertion positions g}, that can improve
performance, excluding the optimal insertion position q;.

4. Repeat steps (2) and (3) until @ is empty.

5. Output the optimal model fio5: (. ).

This method ensures that the optimal network structure is found efficiently by iteratively refining the
search space and focusing on positions that enhance network performance.

Algorithm 2
Multi-Scale Network Search Algorithm Based on Hill Climbing

Given: fo(.), Q@ = {91, G2, -, G} W
Output: fi..(.)

1 ﬁ:est(-) =fo(-)

2. Ac€pr=fo (W)

3. while ¢ = @do

4. for (g; € @) do

5. ffz’”_l [) = ﬁ}est ( ) + fbrauﬁ[':i’z')[-)
6. Acc? = f, (W)

7. end for

8. froc () ={ f; | Acc; = max(Acc?)}

9. Acc,,,, = max {Acc?}

10. If Acc,, > Acc,, then

11. Q={q, | Acc, > Acc,, & &Acc, # AcC,,,
12. fbest () = fmax ()

13. Acc,., = Acc,,

14. else

15. Q=0

16. end if

17. end while
18. return f...(.)

3.Data in the dataset
The dataset used for validating the AMSICNN model and search algorithms is a multi-center melanoma
pathology image dataset. It includes 1642 H&E-stained whole-slide images (WSIs) collected from three sources:
(1) Xiangya Hospital of Central South University (CSUXH)
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Melanoma: 239 WSIs

Compound Nevus: 199 WSIs

Junctional Nevus: 169 WSIs

Intradermal Nevus: 188 WSIs

(2) The Cancer Genome Atlas (TCGA)
Melanoma: 22 WSls
(3) Yale School of Medicine Tissue Microarray Center (YSM)

Melanoma: 825 WSIs

Total: 1642 WSIs

The original WSIs are extremely large (usually >100,000x100,000 pixels) and cannot be directly input into
the CNN model for inference. The pathological images are preprocessed using a parallel method to handle WSIs and
generate datasets. The WSIs, at 40x magnification, are processed into 512x512 pixel image patches using a sliding
window method. All image patches are standardized, with blank background patches and non-lesion patches being
discarded. Finally, the WSI images are divided into training, testing, and validation sets in a 7:1.5:1.5 ratio. The
validation set is used for hyperparameter tuning, while the training and testing sets are used for neural network
training and testing. Due to significant differences in the number of image patches among the four categories of
melanoma, compound nevus, junctional nevus, and intradermal nevus, a certain number of image patches are
randomly discarded or augmented from each WSI to achieve better CNN training results while ensuring the
diversity of image patches. Notably, image patches at 20%, 10%, and 5x magnifications are downsampled from 40x
magnification patches.

Table 1
Multi-Center Dataset
Data Source Disease Type Number of WSIs
Melanoma 239
Compound Nevus 199
CSUXH Junctional Nevus 169
Intradermal Nevus 188
TCGA Melanoma 22
YSM Melanoma 825
Total 1642

4. Exploratory Data Analysis

The performance metrics used to evaluate the melanoma pathology image diagnosis model include
accuracy (Acc), specificity, sensitivity, and F1 score.

Accuracy (Acc) is the most commonly used metric, representing the ratio of correctly classified image
patches to all image patches. It indicates the model's ability to make correct diagnoses and can be used to evaluate
the overall performance of the method. It can be expressed as:

NiptNin
Nip+Nen+Nep+Nry

Ace =

(®)

Specificity and sensitivity are common features in medical diagnoses. Specificity refers to the probability
of the diagnostic model not giving false positives, while sensitivity refers to the probability of not missing positive
cases during diagnosis. The F1 score, which considers both precision and recall, is a commonly used evaluation
metric for multi-class problems. It can be viewed as a harmonic mean of precision and recall.

To validate the classification ability of the AMSICNN model, ResNet50, VGG19, and EfficientNetBO are
selected as backbone networks. Tests are conducted on the original backbone network, AMSICNN (with all
branches inserted), and AMSICNN (optimal structure). Table 3 shows the performance of all models in the four-
class image patch classification task. AMSICNN (with all branches) refers to the AMSICNN model with all input
branches inserted into the backbone network, while AMSICNN (optimal structure) refers to the optimal AMSICNN
network model under the current backbone network.

As shown in Table 3, AMSICNN (optimal structure) achieves better performance than the original network
across all three backbone networks. The improvement is most significant when using InceptionV4 as the backbone
network, with a 2.6% increase in accuracy (Acc: 0.916 to 0.942). The improvement is less noticeable with
EfficientNetBO0 as the backbone network (Acc: 0.963 to 0.967). On the other hand, when ResNet50 is the backbone
network, the F1 score of AMSICNN (all branches) is 0.951, and the F1 score of AMSICNN (optimal structure) is
0.953, showing close performance. However, when using EfficientNetBO or InceptionV4 as the backbone network,
the performance of AMSICNN (all branches) is significantly lower than that of AMSICNN (optimal structure), with
a gap of up to 5.7% in accuracy for InceptionV4.
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The experimental results indicate that the proposed AMSICNN model can classify melanoma and various
nevi effectively. The additional scale information input of the AMSICNN network can enhance the diagnosis of
melanoma. However, the performance improvement of the model with additional scale image input depends on the
structure of the backbone network. The AMSICNN model's performance is 0.3% to 2.7% higher than that of the
original network in all three backbone networks. Furthermore, the impact of input branch increase on model
performance is non-linear, necessitating a multi-scale model search algorithm to identify the optimal network
structure.

Table 3
Performance Comparison of AMSICNN and Original Models
Backbone Network Model Structure Accuracy Sensitivity Specificity F1 Score
Original Network 0.956 0.929 0.972 0.933
ResNet50 AMSICNN (All Branches) 0.967 0.951 0.979 0.951
AMSICNN (Optimal Structure)| 0.969 0.956 0.978 0.953
Original Network 0.963 0.942 0.977 0.944
EfficientNetBO AMSICNN (All Branches) 0.96 0.932 0.977 0.94
AMSICNN (Optimal Structure)| 0.967 0.949 0.948 0.949
Original Network 0.916 0.832 0.977 0.883
InceptionVV4 AMSICNN (All Branches) 0.885 0.832 0.953 0.857
AMSICNN (Optimal Structure) 0.942 0.91 0.968 0.918

5. ANALYSIS OF THE RESULTS

In this study, we addressed the challenge of multiscale feature extraction and fusion in pathological images
by proposing a variable multiscale neural network architecture and two corresponding multiscale network structure
search algorithms. The variable multiscale neural network consists of a backbone network and one or more parallel
multiscale input branches. The parallel input of multiscale image information endows the network with the ability to
extract and fuse multiscale features effectively.To identify the optimal multiscale network structure, we introduced
two search algorithms: a minimum-cost search algorithm and a hill-climbing search algorithm. The minimum-cost
search algorithm is designed to find the optimal structure with fixed and minimal computational cost, while the hill-
climbing search algorithm seeks superior multiscale network structures at the expense of slightly higher
computational costs.The experimental results demonstrated that the variable multiscale neural network outperformed
the original network in diagnostic performance. Both search algorithms achieved near-optimal variable multiscale
neural network structures with significantly lower computational costs compared to exhaustive search methods.
Specifically, the minimum-cost search algorithm consistently required the least computational cost. In comparison,
the hill-climbing search algorithm yielded more optimal multiscale network structures.An ablation study was
conducted to further investigate the performance improvements of the variable multiscale network. The results
indicated that the enhanced performance was primarily attributed to the additional multiscale image information
input. This finding underscores the importance of incorporating multiscale inputs in neural networks for
pathological image analysis.

In conclusion, the proposed variable multiscale neural network and the efficient search algorithms provide
a promising approach for improving diagnostic performance in pathological image analysis while maintaining low
computational costs.
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