Mixcnapoonuil HayKoeo-mexHiuHuil HeypHan
«BumiproeanbHa ma o64yucnoeasibHa MexHika 8 mexHoJ102iYHUX npoyecax»
ISSN 2219-9365

https://doi.org/10.31891/2219-9365-2024-80-5
UDC 004.49

SUPRUNENKO lIllia
Cherkasy State Technological University
https://orcid.org/0000-0002-1188-4804
i.0.suprunenko.asp22@chdtu.edu.ua

RUDNYTSKYI1 Volodymyr

Cherkasy State Technological University
https://orcid.org/0000-0003-3473-7433

VALIDATION OF DYNAMIC MESSAGE VARIANT IN ADAPTIVE LOGGING
METHOD

Technology, and software technology in particular, is one of the main drivers of progress in human society. It allows us to
solve existing tasks more efficiently and find solutions for problems that were previously too complex to deal with. The outreach
and importance of its influence on everyday life is hard to overstate. To be able to satisfy ever-growing demand software solutions
become more complex and sophisticated, reaching millions users and solving numerous day to day tasks. But as a result new
challenges appear, especially related to cybersecurity. And it is not only about integrity, availability and confidentiality aspects, but
also — equally important — about control and observability. As the scale of software systems grows more and more, tracking their
state and behavior becomes more challenging.

This research takes a closer look at observability aspect of cybersecurity, in particular at adaptive logging method for
software systems and its dynamic message variant which introduced the ability to have dynamic computations executed before
outputting observational information about the system. The flexibility it introduces also makes possible for undesirable side effects
to occur as the dynamic nature of such messages allows for execution of virtually any valid code samples. The main purpose of this
work is to demonstrate a solution that would allow validation and prevent unwanted code execution. To achieve this an approach
that uses analysis of abstract syntax trees with JSON-based validation logic is demonstrated. The natural tree-like structure of ASTS,
as well as close resemblance between generated representation and JSON-schemas, allows for precise and easily configurable
processing that reduces the possibility of unexpected behaviors. The integration into an existing formal basis of adaptive logging
method is also demonstrated with provided justification for required additions and their specifics.

Keywords: cybersecurity, observability, logging, validation, abstract syntax trees, JSON-schema.

CVIIPYHEHKO Innst, PY JHULIBKUIA Bonogumup

Yepkacbkuil Iep>kaBHUI TEXHOJIOTTYHUI YHIBEPCUTET

BAJILJAIIA IMHAMIYHUX IMTOBIJOMJIEHb METOAY AJAIITUBHOT' O
JIOT'YBAHHA

TexHos10ri], 1@ TEXHOJIONI MPOrpamMHOro 3a6E3eYEHHS], € O4HNUM [3 rO/I0BHUX PYLUIiB MPOrpecy B JIOACLKOMY CyCIli/IbCTB.
BOHM [03BO/ISIOTE BUPILLYBATY ICHYIOYI 384341 Oifibll €MEKTUBHO, @ TaKOX 3HaxoanTy pIleHHS 418 pobremM, siKki 6y/m 3aHaaTo
CKAHUMY [U151 PO3B '3aHHS. OXOI/IEHHS Ta BaX/MBICTL iX BI/IMBY HA MOBCAKAEHHE XUTTS BaXKO nNeEpeoyirnTy. LLjob matm 3mory
3840BO/IbHUTH 3POCTaIYMI MOMUT, MPOrPaMHi PILUEHHS CTalOTb GIIbLLI CKIGAHUMY, BUDILLYIOYM YUCTIEHHI MOBCIKAEHHI 3a4adi 4715
MITIbYIOHIB KOpUCTYBaYiB. OfHaK SK HACTAOK 3'9B/SIOTEC HOBI BUKIIMKM, B TOMY YuC/Ti 110B'S3aHI 3 iHGopMaLiviHo 6e3mnexoro. T
MOBa HE JIMLLIE PO aCreKTH LIITICHOCT], AOCTYIHOCTI Ta KOH@IAEHLIHOCTI, ase TaKoX - WO HE MEHLL BaX/MBO - PO KOHTPO/Ib Ta
CIIOCTEPEXHICTB. I3 3D0CTaHHAM MacluTabliB CUCTEM IPOrPamMHOro 3a0€3reqeHHs], Bce OifIbLLUMM BUKITMKOM € 334a4a CITIOCTEDEXEHHS
3a iX CTaHOM Ta 1OBEAIHKOIO.

L{a poboTa po3r/iisgac acrekT iH@OpMaLiiHOi 6E3MekM, O CTOCYETHCS CIIOCTEPEXHOCT, @ CaMe METO4 a4ariTuBHOIo
JIOrYBaHHS A/15 CUCTEM IPOrPaMHOro 3abE3MeYeHHs Ta AMHaMidHy Bapiauito 710r-roBigoM/IeHs, Lo JO3BOJISIE BUKOHYBATYU ANHAMIYHI
06YUCTIEHHS NEPEA BUBOAOM IHGOPpMALIi npo cuctemy. OKpiM GifibLUIOI THYYKOCTI aKHa BapiaLlisi TakoX pOOUTL MOXX/IMBUMYU HEOKAHI
CTOPOHHI €QeKTH, OCKI/IbKM AMHaMIYHA MPUPOAa AO3BOJISIE BUKOHAHHS Malbke OyAb-9Kkoro kogy. Mera uiei pobotv nosisrae B
AEMOHCTPAUIT PiLLEHHS], L0 AO3BO/IUTL NEPEBIPUTH Ta 3aIT0GIrTH BUKOHAHHIO HEOaXXAHOro Kogy. /15 Uboro BUKOPUCTAHO Mi4Xia, LYo
BUKOPUCTOBYE aHasl3 abCTPAKTHUX CUHTaKCMYHUX AEpeB Ha ocHosi JISON-cxem. [lepeBosuaHa CTpykTypa ACYH, a Takox nogioHicTs
MDK 3reHEPOBAaHoI0 CTPyKTypoto 1a JSON-cxemamm [03BOJISIE TOYHILLIE Ta MPOCTILLE HA/IALLITOBYBAaTH OOPOBKY ANHAMIYHOIO KO4y, LYo
B CBOIO YEPry 3MEHLLYE VMOBIPHICTb HECIOAIBAHOI MOBEZIHKH, TAKOX MPOJEMOHCTPOBAHO IHTErPaLito B ICHyOYYy (OpMasibHy OCHOBY
METOLY 3AaINTUBHOIO JIOrYBaHHS 3 MOSCHEHHSIMU HEOBXIAHUX 3MiH Ta iX 0COB/IMBOCTEN.

Kio4oBi crioBa. Kibepbe3reKka, CrioCTEPEXYBAHICTb, XKYDHA/IOBAHHS, Basligalis, abCcTpakTHi cuHTakcnyHi gepesa, JSON-
cxema.

INTRODUCTION
Globalized modern world is heavily reliant on software technologies. Reading news online, checking bank
accounts, searching information, learning, shopping and other activities have been digitized to a considerable degree
so that it might even be quite odd to do some of those differently. The ease of global network access that handheld
devices provide only ensures that the Internet is not going to disappear any time soon. But this convenience comes at
a cost and not only the performance and user-friendliness of such systems is in high demand — cybersecurity
considerations are also essential.

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

31

https://doi.org/10.31891/2219-9365-2024-80-5
https://orcid.org/0000-0002-1188-4804
mailto:i.o.suprunenko.asp22@chdtu.edu.ua
https://orcid.org/0000-0003-3473-7433

Mixcnapoonuit HayKoeo-mexniuHuil JHeypHan
«BumiprosanbHa ma o64ucnroeasibHa MexHika 8 mexHoJs1I02iYHUX npoyecax»
ISSN 2219-9365

LITERATURE REVIEW

Ease of access to different services that the Internet provides can sometimes feel as a fundamental
undeniable right, but it is very well possible even for absolutely harmless, beneficial and publicly open technologies
to become a victim of malicious actors. In October 2024 the biggest organization that deals with storing historical
Internet data — Internet Archive (and their Wayback Machine service) — was attacked and kept in unusable state for
several days (“Internet Archive Services Update: 2024-10-17”, 2024). Together with a distributed denial of service
(DDQS) attack, an exposure of email addresses and encrypted passwords occurred. Even though the crawling
services were said to be back online, the damage had already been done. A BlackMeta hacktivist group claimed to
be behind this attack and promised to conduct new attacks.

Potential threats can be presented in a much more subtle manner than direct and plain DDOS attacks. And
even then the number of affected people can be quite high. In September 2024 a vulnerability was recorded in the
National Vulnerability Database (“NVD — CVE-2024-9680”, 2024) that described a successful attack resulting in a
code execution in the content process after exploiting ‘“use-after-free” related software bug. It affected a
considerable range of Firefox web browser releases and originated from Animation timelines, which is a module
related to Cascading Style Sheets and is generally not expected to cause such critical issues. As software becomes
more complex and more rich in features — more surface for attack gets exposed. Physical threats to software systems
are just as dangerous as ones that are entirely virtual and can even affect even those systems that were specifically
designed to be much less susceptible to external threats. For example, there exists a possibility of an attack
conducted on or air-gapped systems that are physically separated from the Internet and other networks (Guri, 2024).
It was shown that it is possible to emit radio signals from a compromised computer and make it emit data, such as
files, images, password, biometric information, that can be easily captured even by the off-the-shelf antenna. As a
result, the established safety perimeter with protection mainly based on separation from other computers might turn
out to be helpless against an attack from a new and unexpected angle.

The pursuit of new and better technology, new technological wonders that should make everyday lives
easier can also bring about new dangers and cause security concerns. With the rise of “artificial intelligence”-like
solutions based on large language models, giants like Microsoft started putting effort into adding those into their
products. One such addition, Al-powered Recall Feature for Copilot+ PCs, is said to raise some security concerns
among general public, which in turn caused Microsoft to delay the rollout of this controversial solution (“Microsoft
Delays Al-Powered Recall Feature for Copilot+ PCs Amid Security Concerns”, 2024). And following plans
included first releasing to a smaller subset of users to make sure that the experience for end users will be secure and
trusted. So it can be stated that security related concerns are still pertinent and should not be easily ignored.

Aside from three fundamental pillars that are integrity, availability and confidentiality, the aspect of
observability is just as important. If a software system does not have a sufficient degree of observability, the
consequences can be severe. In summer of 2024 a widespread disruption to computers using Microsoft Windows
operating systems happened (Ogundipe et al. 2024). The cause was concluded to be a faulty update of Falcon
cybersecurity software and affected millions of Windows devices and while not malicious in its intent, it
demonstrated (among other things such as the need for progressive release strategies for software products) how
dangerous an insufficient degree of certainty in a piece of software can be. The oversights in both management and
internal control over what gets shipped and whether it is developed correctly caused a lot of issues for institutions
such as Bank of America, the Commonwealth Bank of Australia and London Stock Exchange, which experienced
delays in displaying the opening trades (Gudimetla, 2024).

Recent technological advancements, specifically the development of large language models, opened up
new ways of working with tasks such as natural language processing, content creation and even decision making in
different systems. Despite all of the improvements that it brought to those fields an issue of hallucination in LLMs
remains a key challenge (Cleti and Jano, 2024). As those models can sometimes generate content that is factually
incorrect, inconsistent or entirely fabricated (yet seems plausible), it is essential to properly debug and refine the
internal architecture to prevent such errors from causing harm. The detection methods presented by the authors
include named entity recognition, probability-based approaches, as well as prompt engineering and grounding
techniques.

There are solutions to the problem of insufficient observability such as monitoring and logging. Those are
pretty much widespread and known to the general public and there are lots of available options to use in custom
systems, however only big corporations with high expertise (Netflix, Facebook, Google) are generally able to
develop appropriate solutions for large scales (Tamburri et al., 2020), while other companies and solutions use the
composition of thousands of existing monitoring tools. And it is possible that for some use cases plain monitoring
and logging approaches are not enough.

RESULTS AND DISCUSSION
To solve some observability related issues an approach called “adaptive logging method” (Suprunenko &
Rudnytskyi, “On specifics of...”, 2024) can be used. It is based on a concept of software logging, but with special
information (called “log tags”) added to each invocation that allows to be more specific. Then, based on a special

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

32

Mixcnapoonuil HayKoeo-mexHiuHuil HeypHan
«BumiproeanbHa ma o64yucnoeasibHa MexHika 8 mexHoJ102iYHUX npoyecax»
ISSN 2219-9365

configuration description, a programmer can filter out information entries, excluding generation of those, that have
no value for the current task at hand. A further improvement of the initial idea, that focused mainly on filtering
capabilities combined with re-initialization procedures, is presented in “Dynamic message variant in adaptive
logging method” (Suprunenko & Rudnytskyi, 2024). In addition to common and typical text-based messages,
another approach is presented that allows to run some processing logic inside an active runtime environment and to
inspect different parts of an execution context without introducing major changes to the current state of the
codebase. This capability is based on the script-like nature of some languages (such as Python or Javascript) which
to some extent limits the portability of updated design of base adaptive logging method, but is required to give even
more flexibility and make the development process more transparent. Because of this, the rest of this research is
mainly focused on implementations that allow for dynamic code evaluation and in fact takes Javascript
programming language as the basis for further development.

As described in “Dynamic message variant in adaptive logging method”, there are 2 main equations that
describe updated adaptive logging method.

fiog adp — f(Sev, Mpy, Tina) 1),

which describes a signature of log invocation function, where:
Sev — severity of a given log message, usually represented as a literal string from a predefined set of values,

such as “error”, “warning”, “debug” (particular values are not enforced by the method itself and can be specified by
an implementer with a constraint that those should have strict ordering from less important to more important),

Mpy — message description which can be presented in one of two forms: either a text-based message that
is predefined to some extent, or a script-like “dynamic evaluation” based reference with captured arguments that
allows to compute debug values and investigate behaviour of a system “on the fly”,

Tiner — @ set of tags for current invocation.

finit = f(Sev,C)),

which defines the shape for initialization function for an adaptive logging method implementation, where:

Sev — severity, but as a configuration flag for the entire implementation, having a meaning of “only log
messages with severity greater than or equal to this one are of interest”,

C — configuration object, that consists of settings such as a map of dynamic message bodies to be evaluated
and executed with provided parameters, a set of special “and” and “or” segments that fine-tune the desired level of
precision a programmer wants to get from a piece of software.

The addition of code that can be assembled and evaluated during runtime execution is a very powerful tool,
but the scale of flexibility it introduces is shadowed by some of the flaws of such design. If malformed and incorrect
code samples can safely be caught by runtime, there is no built-in way to properly sanitize what exactly gets
evaluated. The application of the latest design of adaptive logging method in production environments is a
somewhat debatable topic, but for development or staging environments it might serve as a valuable addition. And
for those cases it seems beneficial to have the ability to limit (or at least validate) what code is being evaluated on
the fly.

Because dynamic messages are represented as textual strings of code, there are several ways to process
those, for example using regular expression oriented parsing or utilizing abstract syntax trees (ASTs). As described
in “Dynamic source code processing approaches in context of adaptive logging method” (Suprunenko &
Rudnytskyi, 2024), AST-based processing provides better capabilities mainly because this is exactly what software
parsers are designed to do (break strings of code into sensible structures) and because the resulting representation is
easily traversable and can be meaningfully reasoned about.

To properly proceed further it is required to set some constraints and limitations. As mentioned previously,
this research is based on an environment for a particular programming language — Javascript (and its platform for
writing backend code — NodeJS). As such the examples of code and AST representations are written in it. In order to
show how processing of dynamic messages in adaptive logging method can be performed, the reasoning and
assumptions are based around a particular use case from real life that would benefit from adaptive logging method,
in particular — logging details about http requests in a web server. A popular solution used to write web servers in
NodelJs is a framework called “Express.js” (“Express - Node.js web application framework™). At its core it allows to
create a web server as a series of routes or routers that listen on a particular HTTP resource path using a specific
HTTP method. Each request handler has access to two specific entities: “request” and “response”, where “request”
serves as a holder for all information and methods related to client HTTP request and “response” is used to form and
send HTTP responses. Figure 1 shows an example route on a path “/authorization” using POST method and
corresponding output of “request” method in console display.

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

33

Mixcnapoonuit HayKoeo-mexniuHuil JHeypHan
«BumiprosanbHa ma o64ucnroeasibHa MexHika 8 mexHoJs1I02iYHUX npoyecax»
ISSN 2219-9365

app.post(

"fauthorization’,

(req, res _
console.log(req

IncomingMessage {
_events: {
close:
error:
data:
end: undefi
readable:
}s
_readableState: ReadableState {
highlWaterMark: 16384,
buffer: [].
bufferIndex: @,
length: @,
pipes: [1,
awaitDrainWriters: null,
[]: 1315084
}s
_maxListeners: wundefined,
socket: Socket {
connecting: false,
_hadError: false,
_parent: null,
_host: null,
_closefAfterHandlingError: false,
_events: {
close:
error:
prefinish:
finish:
drain:
data:
end:
Fig. 1. Example of POST request handler and console output of “request” object

It is important to note that the subset of properties of the “request” object presented here is far from
covering even a quarter of all properties inside. Naturally some of those are just methods, others might be circular
structures or refer to internal implementation details that are not really relevant to real life scenarios. But things like
HTTP headers, Uniform Resource Locator (URL) path, body of the request, parameters, query string parameters,
encoding, connection details and others can be really valuable for proper debugging. And as during development it
is sometimes not immediately obvious what parts of the incoming client message need deeper investigation, being
able to evaluate different computations using dynamic message variant in adaptive logging method can aid
considerably.

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

34

Mixcnapoonuil HayKoeo-mexHiuHuil HeypHan
«BumiproeanbHa ma o64yucnoeasibHa MexHika 8 mexHoJ102iYHUX npoyecax»
ISSN 2219-9365

A typical parts of incoming request that can be useful to examine are the original URL and HTTP headers.
For a piece of code like “req.headers”, which takes request object in ExpressJS handler and accesses its “headers”
property (which is a map from HTTP header name to its value), Figure 2 demonstrates generated abstract syntax tree
(note, that some parts are omitted for brevit

"type”:
"express
"type": "M
"object": {
"type":
"name" :

I

"property”:
”t':.l'pEl" :
"name"” :

Fig. 2. Abstract syntax tree representation of “req.headers” code expression

This is generated using “acorn” (“GitHub - acornjs/acorn: A small, fast, JavaScript-based JavaScript
parser”) Javascript library which is a code parser that outputs hierarchical tree-like structure in Javascript Object
Notation (JSON) format. As can be seen from the figure, whole statement is treated as a “program” with one child
being an “expression statement”, which in turn consists of two other parts — “object” (meaning an entity which we
use to extract a specific property from) and “property” (what “part” of the “object” we want to see). Naturally more
sophisticated pieces of code result in more complex ASTSs, like function invocations, variable assignments,
mathematical operators or even declarations for entire function bodies.

In the context of dynamic messages in the adaptive logging method having this structure is a first step to
being able to validate what exactly the invocation will run. It is worth mentioning that parsing code like this only
gives some static analysis capabilities and won’t be able to catch reference to variables or properties that do not
exist, incorrect use of globals and other errors like that. Those are expected to be caught by runtime implementation,
perhaps inside a typical “try ... catch” block. With AST structure presented as a JSON object it is already possible
to do some decision making and filter out incorrect or unexpected patterns. can be done manually and the resulting
tree can then be traversed using Javascript itself, similarly to the task of parsing strings of code - there are better
alternatives.

At its core Javascript is a dynamic scripting language with variables that can change type during execution.
Because of that a fairly common task is to validate the shape of a particular value and it can be achieved using
special validator libraries. One specific library used for validation of Javascript values is called “Ajv” (“Ajv JSON
schema validator”) and it functions based on the special “JSON-schema” format (Wright et al., 2022) Those
schemas are plain JSON objects themselves but with predefined and predictable structure that allows to describe
desired value shape. This definition can then be compiled using Ajv into a special validator and finally the validator
function can be called with a parameter we want to check returning false Boolean value if the check failed. Because
of the orientation on JSON format, Ajv with JSON-schema format can be seen as a perfect fit for the task of
validating JSON-based abstract syntax trees.

The next step in shaping up the necessary parts for validation of dynamic messages of the adaptive logging
method is to demonstrate how Ajv and JSON-schema can be used with the aforementioned use case of working with
“headers” object of an HTTP request. Figure 2 presents a view of AST generated from “req.headers” code line that
is a bit shortened (has no information about positions, for example), but still contains enough structural information
to make decisions based on that shape. Mainly it can be observed that a simple “property access” AST has following
features: top level element has type ‘“Program” with its body being an array and having exactly 1 element; that

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

35

Mixcnapoonuit HayKoeo-mexniuHuil JHeypHan
«BumiprosanbHa ma o64ucnroeasibHa MexHika 8 mexHoJs1I02iYHUX npoyecax»
ISSN 2219-9365

element has type “Expression statement” with its details placed under “expression” key and both parts of that
“MemberExpression” object are of type “Identifier”. Figure 3 shows a schema that tests these constraints:

["_'-:

properties:
type: type: ‘string’, enum: ['P
body:
type: ‘array’, maxItems: 1, minItems:
items: |
type: ‘object’, required:
properties: {

type: type: 'string’, enum: ['Ex
expression:
type: ° ', required: ['object’,
properties:
type: { type: 'string’, enum: [MemberkExpression’
object:
type: "object’, required:
properties: type: { type: 'string', enum: ['Identifier'] }
property:
type: "o ', required:
type: { type: tring', enum: ['Identifier’] }

Fig. 3. JISON-schema for validation of simple property access AST.

It is worth noting that while being a bit longer than the AST representation in Figure 2, JSON-schema
mirrors (to some extent) the nesting of the original, resulting in a declarative and understandable format that has
implementations in different programming languages and platforms, can be easily fine-tuned to match required level
of precision for a given value, can be combined with logical operations such as “all of” or “any of” and is
completely serializable. The last property is essential for a design choice that would allow to finally combine this
capability with adaptive logging method.

The introduction of dynamic message capability was accompanied by addition of a new setting in
configuration object C (2) —a map that establishes a relationship between dynamic bodies and identifiers used at call
sites. An abstract shape of such map is presented in (3):

Mgyn = Map < string,string > 3)

“Map” is used in general programming terms of a mapping from a value of one type to another and in this
case the first “string” represents an identifier (not really bound to a specific algorithm or shape, just has to be unique
among its neighbors) and second one is the dynamic body itself. With this mapping in place and also considering the
fact that validation is directly tied to a specific id in this map (with a possible option that only a subset of all
dynamic messages would require corresponding validation logic), a suitable way to store JSON-schemas is in
another map (4), which would represent a relation between ids and schema objects ready to be consumed by Ajv and
applied when validating a dynamic message that is stored under the same identifier in (3).

Mdyn schm = Map < string, O}SON—schema = (4)
where O;son—schema 1S @ object similar to the one demonstrated in Figure 3.

At this point it becomes possible to perform a final formalization of configuration object C used in (2) and
to demonstrate (5) its segments and their relationship:

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

36

Mixcnapoonuil HayKoeo-mexHiuHuil HeypHan
«BumiproeanbHa ma o64yucnoeasibHa MexHika 8 mexHoJ102iYHUX npoyecax»
ISSN 2219-9365

Tmed n med n || Tred n Tmed L] ...
C= Mgyn = Map < string,string > ()

Mdyn schm = Map < String-ojsow—schema =

where Mgy, and Mg,y scnm Were already explained in (3) and (4) respectively and first segment is
described in “On specifics of adaptive logging method implementation” and represents a combination of “and” and
“or” segments of log tags, forming a set of constraints that can be used to decide whether a particular log invocation
should be printed out or skipped (based on its tags provided at call site and result of comparing those to the
constraint in configuration). All three of those are grouped using logical operation “and” which conveys the notion
of loose relation between segments and further illustrates that the main idea of this research is to expand on basic
capabilities of adaptive logging method.

CONCLUSIONS

Ability to have log statements with configurable content (introduced by dynamic message variant) is a very
powerful and flexible feature. It adds more tools to properly debug and investigate issues in software development.
However, it also presents new challenges related to controlling and restricting what can be executed and how much
it can influence other parts of the code base. This paper introduced a potential solution for this issue in a form of
validation mechanism based on parsing source code strings into abstract syntax trees and then validating resulting
JSON-based structures using Ajv validator and JSON-schema standard. This allows to have a considerable degree of
flexibility and precision when adding proper protection around mechanisms of dynamic code execution. Close
mapping between AST and schemas simplifies creation of scalable and accurate sets of rules that give a much
needed layer of confidence that developed software is more resilient to bugs and unexpected side effects which
would otherwise be completely uncontrolled. Possible prospects for further research might look into implementing
adaptive logging method, with all accumulated improvements, in real life scenarios such as local development
environment or remote cloud-based deployments; it would also be valuable to inspect how far the idea can reach
meaning its applicability not only in server based programs written in (mostly) scripting programming languages,
but also if it can provide much needed observability improvements in branches such as native development or
lambda computations.

References
1. Internet Archive Services Update: 2024-10-17. (2024). Retrieved ~ from:
https://blog.archive.org/2024/10/18/internet-archive-services-update-2024-10-17/
2. NVD — CVE-2024-9680. (2024). Retrieved from: https://nvd.nist.gov/vuln/detail/CVE-2024-9680
3. Guri, M. (2024). RAMBO: Leaking Secrets from Air-Gap Computers by Spelling Covert Radio

Signals from Computer RAM. In: Fritsch, L., Hassan, I., Paintsil, E. (eds) Secure IT Systems. NordSec 2023.
Lecture Notes in Computer Science, vol 14324. Springer, Cham. https://doi.org/10.1007/978-3-031-47748-5_9.

4, Microsoft Delays Al-Powered Recall Feature for Copilot+ PCs Amid Security Concerns. (2024).
Retrieved from: https://thehackernews.com/2024/06/microsoft-delays-ai-powered-recall.html

5. Ogundipe O., Dr Aweto T. (2024) The shaky foundation of global technology: A case study of the
2024 CrowdStrike outage. International Journal of Multidisciplinary Research and Growth Evaluation, vol. 5, issue
5, p. 106-108.

6. Gudimetla S. R. (2024). Cloudstrike Impact on Global Outage and The Challenge of SAAS In the
Future. International Journal of Computer Engineering and Technology, vol. 15, iss. 4. pp. 472-480.
https://doi.org/10.5281/zen0do.13304712.

7. Cleti M., Jano P. (2024). Hallucinations in LLMs: Types, Causes, and Approaches for Enhanced
Reliability. https://doi.org/10.13140/RG.2.2.12184.61445
8. Tamburri D. A., Miglierina M., Di Nitto E. (2020). Cloud applications monitoring: An industrial

study. Information and Software Technology, Volume 127, 106376, ISSN 0950-5849.
https://doi.org/10.1016/j.infsof.2020.106376

9. Suprunenko, 1., Rudnytskyi, V. (2024). On specifics of adaptive logging method implementation.
Bulletin of Cherkasy State Technological University, 29(1), 36-42. https://doi.org/10.62660/bcstu/1.2024.36

10. Suprunenko, 1., Rudnytskyi, V. (2024). Dynamic message variant in adaptive logging method.
Modern information security, vol. 3, pp. 94-99. https://doi.org/10.31673/2409-7292.2024.030010

11. Suprunenko, 1., Rudnytskyi. (2024). Dynamic source code processing approaches in context of
adaptive logging method. In conference proceedings of the 3rd International Scientific and Practical Internet
Conference “Global Society in Formation of New Security System and World Order”, July 4-5, pp. 20-22.

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

37

https://blog.archive.org/2024/10/18/internet-archive-services-update-2024-10-17/
https://nvd.nist.gov/vuln/detail/CVE-2024-9680
https://doi.org/10.1007/978-3-031-47748-5_9
https://thehackernews.com/2024/06/microsoft-delays-ai-powered-recall.html
https://doi.org/10.5281/zenodo.13304712
https://doi.org/10.13140/RG.2.2.12184.61445
https://doi.org/10.1016/j.infsof.2020.106376
https://doi.org/10.62660/bcstu/1.2024.36
https://doi.org/10.31673/2409-7292.2024.030010

Mixcnapoonuit HayKoeo-mexniuHuil JHeypHan
«BumiprosanbHa ma o64ucnroeasibHa MexHika 8 mexHoJs1I02iYHUX npoyecax»
ISSN 2219-9365

12. Express - Node.js web application framework. Retrieved from: https://expressjs.com/.

13. GitHub - acornjs/facorn: A small, fast, JavaScript-based JavaScript parser. Retrieved from:
https://github.com/acornjs/acorn

14, Ajv JSON schema validator. Retrieved from: https://ajv.js.org/

15. Wright A., Andrews H., Hutton B., Dennis G. (2022). JSON Schema: A Media Type for
Describing JSON Documents. Retrieved from: https://json-schema.org/draft/2020-12/json-schema-core

International Scientific-technical journal
«Measuring and computing devices in technological processes» 2024, Issue 4

38

https://github.com/acornjs/acorn
https://ajv.js.org/
https://json-schema.org/draft/2020-12/json-schema-core

